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Abstract

Music source separation is the decomposition of an audio recording into the recordings of its

individual sources. It plays an integral role in applications ranging from musicological tasks such

as transcription to practical industrial applications such as karaoke. In this dissertation, we explore

the complex task of music source separation, examining the nuances of current challenges in the

field and presenting novel methods to overcome them. Although state-of-the-art deep learning

approaches have made significant progress, they often introduce distortions, artefacts and other

perceptual inaccuracies. We propose a paradigm shift towards prioritising auditory experience

over high precision in the reconstruction of a reference target. Our research presents a generative

approach to the task, using models currently employed for automatic music generation to approach

source separation and separation enhancement in a less conditioned way. The primary goal is to

improve sound quality, even if this means deviating from the original target, thus examining the

essence of what makes audio “good” or “authentic” without being tied to direct waveform or

spectrogram comparisons. To this end, we use token-based audio generation and exploit neural

codec architectures to achieve a balance between fidelity of reconstruction of the original source

and perceived audio quality. While our research has had its challenges, partly due to the rapidly

evolving field of automatic music generation and the early-stage nature of some of the proposed

methods, our work serves as a fundamental step in understanding the potential of token-based

music generation in highly conditioned tasks. The work concludes by highlighting the need for a

holistic approach to music source separation, one that aligns with the human auditory experience

and expands the horizons of musicians and listeners alike.

Keywords: Source separation, music generation, enhancement, neural codecs, token-based gen-

eration

Résumé

La séparation de sources musicales est la décomposition d’un enregistrement audio en plusieurs

pistes correspondant à ses sources individuelles. Elle joue un rôle important dans des applications

allant des tâches musicologiques telles que la transcription automatique sur partition à des appli-

cations industrielles comme le karaoké. Dans ce mémoire, nous explorons la tâche complexe de la

séparation de sources musicales, en examinant les défis actuels dans le domaine et en présentant de

nouvelles méthodes pour les surmonter. Bien que les approches d’apprentissage profond de l’état

de l’art aient fait des progrès significatifs, elles introduisent souvent des distorsions, des artefacts et

autres imperfections audibles. Nous proposons un changement de paradigme en donnant la priorité

à l’expérience auditive plutôt qu’à une grande précision dans la reconstruction exacte d’une source

de référence. Notre recherche présente une approche générative, en utilisant des modèles actuelle-

ment employés pour la génération automatique de musique afin d’aborder la séparation de sources

d’une manière moins conditionnée. L’objectif principal est d’améliorer la qualité du son, même si



cela implique de s’écarter de la référence originale, ce qui permet d’examiner l’essence même de

ce qui rend un son “bon” ou “authentique” sans être lié à des comparaisons directes de formes

d’ondes ou de spectrogrammes. À cette fin, nous utilisons la génération audio basée sur les tokens

et exploitons les architectures de codecs neuronaux pour parvenir à un équilibre entre la fidélité de

reconstruction de la source originale et la qualité audio perçue. Bien que notre recherche ait connu

des difficultés, en partie dues à l’évolution rapide du domaine de la génération automatique de

musique et au manque de maturité de certaines des méthodes utilisées, notre travail constitue une

étape fondamentale dans la compréhension du potentiel de la génération de musique basée sur des

tokens dans des tâches fortement conditionnées. Ce travail conclut en soulignant la nécessité d’une

approche holistique de la séparation de sources musicales, qui s’aligne sur l’expérience auditive

humaine et élargit les horizons des musiciens et des auditeurs.

Resumen

La separación de fuentes musicales es la descomposición de una grabación de audio en las graba-

ciones de sus fuentes sonoras individuales. Desempeña un papel integral en aplicaciones que van

desde tareas musicológicas como la transcripción hasta usos industriales prácticos como el karaoke.

En esta tesis, exploramos la compleja tarea de la separación de fuentes musicales, examinando los

retos actuales en este campo y presentando métodos novedosos para superarlos. Aunque los en-

foques del estado del arte basados en aprendizaje profundo han hecho progresos significativos, a

menudo introducen distorsiones, artefactos y otras imperfecciones audibles. Proponemos un cam-

bio de paradigma para dar prioridad a la experiencia auditiva, mas que a la alta precisión en la

reconstrucción de un objetivo de referencia. Nuestra investigación presenta un enfoque generativo

de la tarea, utilizando modelos empleados actualmente para la generación automática de música

para abordar la separación de fuentes de una forma menos condicionada. El objetivo principal es

mejorar la calidad del sonido, incluso si esto significa desviarse del target original, examinando aśı

la esencia de lo que hace que un audio sea “bueno” o “auténtico” sin estar atado a comparaciones

directas de forma de onda o de espectrograma. Para ello, utilizamos la generación de audio basada

en tokens y explotamos arquitecturas de códecs neuronales para lograr un equilibrio entre la fi-

delidad de la reconstrucción del objetivo original y la calidad de audio percibida. Aunque nuestra

investigación ha presentado ciertos desafios, en parte debido a la rápida evolución del campo de

la generación automática de música y a la naturaleza incipiente de algunos de los métodos prop-

uestos, nuestro trabajo sirve como paso fundamental para comprender el potencial de la generación

de música basada en tokens en tareas altamente condicionadas. El trabajo concluye destacando

la necesidad de un enfoque hoĺıstico de la separación de fuentes musicales, que se alinee con la

experiencia auditiva humana y ampĺıe los horizontes tanto para músicxs como para oyentes.
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Acronyms

SOTA state-of-the-art

MIR Music Information Retrieval

NMF Non-negative Matrix Factorization

SDR Source-to-Distortion Ratio

SIR Source-to-Interference Ratio

SAR Source-to-Artifact Ratio

SI-SDR Scale-Invariant Source-to-Distortion Ratio

FAD Fréchet Audio Distance

MUSHRA Multiple Stimuli with Hidden Reference and Anchor

MOS Mean Opinion Score

GAN Generative Adversarial Network

MFCC Mel-Frequency Cepstral Coefficients

MSG Make-it-Sound-Good

VAE Variational AutoEncoder

VQ Vector Quantization

RVQ Residual Vector Quantization

STFT Short Time Fourier Transform

DAC Descript Audio Codec

MDS MultiDimensional Scaling

PCA Principal Component Analysis

GT ground truth

MSE Mean Square Error

PQMF Pseudo Quadrature Mirror Filters
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1 Introduction

Music has always played a significant role in human culture, and with the advent of digital stream-

ing platforms, it has witnessed a rise in its ubiquity in our daily lives. The field of audio signal

processing now offers limitless possibilities for these platforms to introduce innovative avenues of

engagement. Currently, these modes of interaction are in a phase of rapid evolution, constantly

shifting. Whether it is for activities such as karaoke for casual enthusiasts, or delving into intricate

endeavours such as music remixing and instrument identification, the demand from music providers

for tools that deconstruct and manipulate musical compositions is steadily increasing. At the core

of many of these applications lies the fundamental task of music source separation.

1.1 Context and Motivation

Music source separation is fundamentally the decomposition of a given audio scene, typically a

music recording, into individual sound sources, be they vocals or various instruments. Interest in

this task has increased since the beginning of the twenty-first century, and it has become a central

problem in machine listening. Its applications are numerous, ranging from music remixing, or

Music Information Retrieval (MIR) tasks such as instrument labelling or transcription, to practical

industrial applications such as karaoke and play-along applications.

One of the standard approaches to this task, popularised in part by easily accessible datasets and

competitions (MUSBD18[1] and MusicDMX challenge[2] respectively), is to separate commercial-

quality stereo recordings into four stems: drums, bass, vocals and “others”.

Current state-of-the-art (SOTA) source separation systems [3][4][5], which use data-driven deep

learning approaches, achieve great results, producing separated outputs that are often of very good

quality and intelligibility. On the other hand, they can produce source estimates that contain

perceptible distortions and artefacts, such as high-frequency noise, source leakage interference,

unnatural transients, loudness variations and inconsistencies, or missing harmonics; especially with

percussive instruments or in instrumental sections. Frequential masking between instruments,

or spatial components of the recording process, as well as modern trends in mixing and post-

processing (such as the use of high compression levels), contribute to these artefacts, making

separation (increasingly) difficult. Furthermore, the modifications introduced in these processes

alter the inherent properties of individual sound sources, making it also challenging to extract and

separate them, not only in their original form but also in a minimally intelligible form.

These artefacts are a major hindrance for many artistic or MIR applications, and although the

current focus of part of the source separation community is to continue to modify architectures to

obtain small increases in performance as measured by the traditional metrics, this may not be the

best approach, as the systems continue to acheive small gains in the metrics, but the perceived

quality is the same or worse[6]. There are already many works[7][8][9] looking at the effectiveness

of these metrics and their relation to human perception, and our work is motivated by the idea of
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focusing on improving sound quality, and not so much on reconstructing the target.

In addition to distortion and artefacts, the task of source separation in music presents numerous

additional challenges, such as generalising from the 4-stem task to a wide variety of instruments.

Because each instrument has a unique timbre and acoustic properties that define its sound, train-

ing a model that works equally well for different instruments would require large datasets with

multi-track recordings that include the instruments in different contexts. Consequently, we’re also

motivated to look at approaches that can be adapted without large amounts of multi-track data.

There are several advantages to a generative approach: it can provide better-sounding karaoke

or play-along applications, improving the user experience for budding and experienced musicians

alike; and it can offer new applications in education, allowing students studying specific instruments

within a composition to enjoy good-quality sounds while gaining insight into musical structures,

styles and techniques. In addition, the tools developed can open up new possibilities for artists

when mixing live, or even for listeners who may be exposed to new ways of engaging with music.

1.2 Objectives

Inspired by the current predicament, where the models that attempt to improve objective met-

rics scores manage to do so without improving our perceived quality or removing artefacts, we

suggest addressing the source separation task with a generative approach. By applying models

typically used for generative tasks (automatic generation of new music in varied genres and artist

styles[10][11][12][13]) we can approach the problem of source separation in a “less deterministic”

manner. This method can result in a more pleasant-sounding isolated source, even when objectively

further away from the ground truth.

Original Separated accompaniment Enhanced separation

Figure 1: Music source separation enhancement illustration

Figure 6∗, illustrates our approach, which involves a second processing step that enhances the

previously separated track and removes artefacts, even if the guitar amplifier changes in the process.

We propose that an enhanced source can end up sounding better, even if it is different to the

∗Image separation performed with DALL-E
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originally recorded source.

In our work we attempt to train neural codecs and transformer architectures to perform enhance-

ment, on stems that are obtained in a pre-processing step using SOTA deep learning based models

to obtain the separated source from the mixture. We also present end-to-end approaches for source

separation using fine-tuned neural codecs and token-based generative models.

Generative models have already been used for tasks such as music enhancement [14], compression

[15][16][17], denoising[18][19][20], end-to-end separation [21][22], and separation enhancement[6].

The latter task is the most similar to our work, in that they apply a generative model as an

enhancement post-processing step to attempt to remove artefacts. Our aim is to explore and

evaluate the capabilities of SOTA generative models for separation, for enhancement of the output

of existing source separation methods, and for other forms of strongly conditioned music generation

(as opposed to music generation conditioned on text, for example).

Our primary focus in this research is on the 4-stem task, i.e. vocals, bass, drums and others. How-

ever, we remain attentive to the wider implications of our methods. In particular, we are interested

in analysing how the techniques we develop can be applied to a broader range of instruments.

Throughout our work, we will give significant importance to our own auditory perception of the

results. We believe that the sonic quality of the output is the ultimate measure of any source

separation system’s effectiveness, therefore, rather than relying solely on conventional metrics, we

give priority to the experiential, auditory quality of the separated tracks. We have not been able

to carry out a standardised subjective evaluation, as would have been desirable.

We advocate the alternative paradigm for music source separation: a generative approach to the

task would involve the introduction of novel, more perceptually focused metrics, as has occurred

in the field of image generation, and this in turn would stimulate the development of separation

systems that prioritise human auditory experience.

Our work is at the intersection of source separation with the burgeoning field of audio generation,

and we posit that while current research trends exhibit significant interest in the unconditioned

and loosely conditioned generation, the real frontier and interest of innovation should be in highly

conditioned generation. Such techniques can provide controllable tools that open up new avenues of

expression and creativity for musicians, rather than attempting to automate the creative processes

that make people’s life worthwhile and an artist’s expertise valuable.

1.3 Deezer

The internship for which this work was carried out was hosted by Deezer’s research team at the

company’s headquarters in Paris. Founded in 2007, Deezer is an international music streaming

company that currently serves millions of users in 180 countries. Its catalogue contains over 90

million audio tracks, including music of all genres and geographical origins, as well as audiobooks
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and podcasts.

Deezer Research, which states its objective as “expanding knowledge about music and how people

interact with it”, is one of the most active private players at the forefront of audio and music data

research. The team’s primary mission is “to help make Deezer a cutting-edge audio streaming ser-

vice, tailored to its customers’ needs”. Their work focuses on challenges related to the organisation

of audio catalogues and human-music interaction, but is not limited to improving the streaming

experience. The team also plays an active role in the global scientific community, consistently

contributing their work to international scientific conferences in areas ranging from audio signal

processing to natural language understanding and recommender systems. The team prioritises the

reproducibility of their work, which they have achieved through extensive sharing of their code and

data. They also frequently collaborate with academic institutions by hosting PhD and Masters

students.

Deezer Research is well known for its work in music source separation. In 2019, they launched

Spleeter, which at the time was the most advanced solution for the task of 4-stem music separation.

Since its inception, Spleeter has cemented its place as a foundational tool in the music demixing

landscape. Its performance and ease of use have led to its adoption in over 500 projects on GitHub,

reinforcing Deezer Research’s reputation for creating impactful and widely applicable technological

solutions in the realm of music and audio.

During the internship, the research team consisted of Manuel Moussalam (Director of Research),

Romain Hennequin (Head of Research), Marion Baranes, Elena Epure, Benjamin Martin, Bruno

Massoni Sguerra, Gabriel Meseguer Brocal, Guillaume Salha Galvan and Viet Anh Tran (Research

Scientists), Rodolfo Ripado, Kamil Akesbi, Darick Lean, Dorian Desblancs and Karl Hayek (Re-

search Engineers), Darius Afchar, Yuexuan Kong, Kristina Matrosova and Gaspard Michel (PhD

students), Harin Lee (PhD intern), and Paul Chauvin, Rayane Donni, Lilian Marey and myself

(Masters interns). The internship was characterised as a research internship on music source sep-

aration with a generative head, and the work was carried out under the supervision of Romain

Hennequin and Gabriel Meseguer Brocal, trying to extend and continue the legacy of the Deezer’s

research team’s influential work on source separation.

1.4 Report Organisation

This report is organised into nine main sections to ensure a logical flow of the information and to

facilitate the reader’s understanding.

Following the “Introduction” presented above, we continue with the “State of the Art” section,

where we delve into the existing literature and critically analyse both the current methods of

source separation and the generative architectures that underpin our approach. This includes a

look at diffusion models, generative adversarial networks, and recent innovations in neural codecs

and codec-based transformers.
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Section 3 is dedicated to establishing the baselines. We further discuss two previous work ap-

proaches, detailing their methodologies and the results of their application.

The fourth section takes the reader through our research design, from the problem formulation to

a discussion of the datasets used, the preprocessing separation methods, the current limitations of

these separation models, and an overarching view of our experimental design.

Following this, Section 5 focuses on our experience in training neural codecs. The methodology

behind training the codec is dissected, followed by an in-depth look at the corresponding experi-

ments.

We then move on to one of our main contributions, our research into codec fine-tuning (Section

6). Here we explore aspects such as the codecs’ compression interpretability and experiments on

fine-tuning the EnCodec codec for enhancement and separation.

In section 7 we present our work leveraging the VampNet transformer for enhancement. This is

followed by a final “Discussion” section where we reflect on our findings and the challenges we

faced throughout our work.

We finally provide a “Conclusions” section, which aims to summarise our main contributions to

the field, highlight the key findings and provide insights into potential future research directions.

2 State of the Art

The work presented in this report lies at the intersection of traditional source separation, and

recent generative models based on deep learning architectures. Throughout our research, we draw

from the recent advances in the latter to explore innovative approaches to the complex task of

source separation. Consequently, this review of the SOTA will predominantly cover these two

main axes.

We will first delve into the landscape of modern source separation approaches, highlighting the

latest methodologies and benchmarks that are driving progress in the field, which are typically

supervised, data-driven methods, built on deep learning architectures. A special emphasis will be

placed on the typical objective evaluation paradigm, a common cornerstone in the development of

these systems. We will examine its advantages and shortcomings, providing a balanced perspective

on its usefulness and its limitations in capturing the nuances of source separation.

We will then consider the field of generative music models, which has seen tremendous growth

in the last five years, through various types of architectures and (big) data-driven methods. We

will review the comparatively negligible impact these advances have had on the domain of source

separation up until the moment. Our focus will be on Generative Adversarial Networks, Diffusion

models, and especially token-based transformer methods, based on neural codecs, which will be

discussed in detail as they underlie a great number of generative approaches that have surfaced
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over the last twelve months.

2.1 Source Separation

A classic way to formulate the source separation task[23][24] is the instantaneous additive mixture

model. It goes as follows: let I be the number of channels of a recording and J the number of

present sources, sj(t) ∈ RI×1 is the I-channel spatial image of source j, and x(t) ∈ RI×1 the

observed I-channel mixture signal. The source separation aims to recover sources sj(t) from the

mixture signal x(t), where signals sj(t) and x(t) are in the time domain and related by

x(t) =

J∑
j=1

sj(t) (1)

It must be said that though the instantaneous additive mixture model is largely dominant, it is

not the only model for source separation[25], and this simple model could indeed be a limitation

of current approaches.

As mentioned above, deep learning data-driven supervised models are the current state-of-the-art

approaches for 4-stem music source separation(J = 4 and I = [1, 2] - with the stems being vocal,

bass, drums and other); for example, all the baselines and leading entries in the 2021 and 2023

Music Demixing Challenge[2] were deep learning architectures.

It is important to note that our exploration will primarily revolve around these deep learning

models, setting aside more classical signal processing unsupervised approaches that were the focus

of much research in the first decade of the 21st century, such as methods based on Maximum Like-

lihood Blind Source Separation[26] or Non-negative Matrix Factorization (NMF)[27][28]. These

methods can be more flexible with different instrumentations, recording settings, or less conven-

tional musical practices, and also easier to interpret, but they have nonetheless been overshadowed

by the data-driven highest performance separators. These separators can normally be classified

in terms of their input/output, as spectrogram models[3][29], waveform models [30], and hybrid

models [5].

Spectrogram models utilize a time-frequency representation of the signal x(f, n) ∈ CI×1 as their

input, either the amplitude of the spectrogram or the complex-valued spectrogram[4][31]. The

output ŝj(f, n) ∈ CI×1 can be obtained from a mask on the spectrogram (Weiner filtering) that

uses the phase of the mixture for the sources[3], through a complex modulation of the input [32],

or with the concatenated real and imaginary parts.

Waveform-based models[30][33][34] are directly fed with the raw waveform of the audio, and output

an audio waveform directly for each of the sources. In reality, these methods normally perform

a learned time-frequency analysis in their first layers through convolutions[30][33], though some

works rely on Recurrent Neural Networks at the input and thus do not count with this analysis[34].
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It is worth noting that from a theoretical standpoint, there should be no discernible difference

between full-spectrogram and waveform models. This would be the result in the case of having

infinite data to train the models, but given the limited dataset constraints (eg. the 100 songs

of MUSDB18) inductive bias can significantly impact the results. It has been observed that

spectrogram and waveform models tend to generate different artifacts[5][6], these artefacts will

also vary depending on the source, ranging from muffled attack sounds in drums and bass due to

phase inconsistency in spectrogram models to crunchy static noise in vocals separated by waveform

models. Trying to compensate for these shortcomings, the current SOTA models take a hybrid

approach, where the input is processed simultaneously by two parallel branches, one receiving the

raw waveform, the other the spectrogram[5].

The machine learning architecture that underpins many of these SOTA systems, regardless of the

type of input, is called the U-net. Originally developed for image segmentation, it has been adapted

to a variety of tasks beyond its original domain, including audio processing[21]. Fundamentally, the

U-net can be characterised by its symmetrical structure, consisting of a contracting path to capture

context and an expansive path to provide localisation. This configuration facilitates the capture of

patterns at multiple scales, making it particularly suited to a task such as source separation, where

different frequential components may require different treatments. Typically, each convolutional

layer in the contracting path is followed by a max-pooling operation that reduces spatial dimensions

and progressively increases depth, while the expansive path uses transposed convolutions to upscale

features. Skip links bridge the layers from the contracting path to the expansive one, helping to

preserve high-resolution features (fine detail).

Recent research by Guso et al.[9] on which objective evaluation metrics should be used as possible

loss functions for training, recommends training with the spectrogram-based losses, with potentially

phase-sensitive targets and adversarial regularisers. They also recommend LogL1-time, which was

found to be able to deliver competent results, and do not recommend the use of mask-based losses.

Source Separation Evaluation

Models of all these types perform very well on standard evaluation metrics, but still present audible

artefacts, which highlights a key element in source separation: the evaluation of the separation.

This task is extremely complex as the human ear is very finely tuned to unexpected or unusual

sounds and noises, and it is difficult to find an evaluation criterion that can correctly detect

what our ear perceives. In general, there are two main ways of evaluating the results of a source

separation approach: objective[7][36] and subjective[37][38], both of which have their advantages

and disadvantages[9][39][40][41].

Objective measures evaluate the quality of source separation by performing a series of calcula-

tions that compare the output signals of a source separation system with the “ground truth”

isolated sources. The most commonly used are the Source-to-Distortion Ratio (SDR), the Source-
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Figure 2: Classic U-Net architecture presented in the original paper by Ronneberger et al.[35]

to-Interference Ratio (SIR) and the Source-to-Artifact Ratio (SAR) as defined by [36], and the

Scale-Invariant Source-to-Distortion Ratio (SI-SDR) as defined by [7]. For these metrics, estimates

of a source ŝi are assumed to consist of four separate components, the target source starget (a ver-

sion of si modified by an allowed distortion), the interference error einterf, the noise error enoise,

and the artefacts eartif.

Another interesting approach to evaluation is proposed in [6], which suggests proxies for evaluating

perceptually relevant features: the spectral roll-off distance at 98% to analyse whether an estimate

has too much high-frequency content or lacks desirable high-frequency content, and an F1 between

the binary onset strength threshold on the ground-truth source and a source estimate to analyse

how well an estimate preserves transients.

Generative works in audio have also incorporated the fairly recent Fréchet Audio Distance (FAD)

by Kilgour et al.[8]. FAD is a relatively new metric, inspired by those used to evaluate image

generation with Generative Adversarial Network (GAN)s, that uses deep learning representations

(embeddings) to evaluate how the generated signal compares to studio-recorded audio and, unlike

other metrics, provides a reference-free evaluation. This perspective on audio evaluation, which

attempts to re-examine the essence of what makes audio “good” or “authentic” without being tied

to direct waveform or spectrogram comparisons, is also what inspires our work.

Subjective evaluation methods involve human evaluators assigning scores to the output of the source
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separation system. The SOTA for subjective evaluation standard are the Mean Opinion Score

(MOS), and Multiple Stimuli with Hidden Reference and Anchor (MUSHRA), which was originally

developed to evaluate the quality of audio reconstruction by codecs, but has since been adapted for

evaluation of various tasks. These tests should be developed according to the recommendations of

the International Telecommunications Union[37], and are ideally carried out by well-trained sound

engineers in a sound-treated room, comparing the qualities of various conditioned sound files with

a reference. In the MUSHRA evaluation, files to be compared should include a hidden reference

and at least one hidden anchor, an intentionally bad variant of the audio traditionally obtained

by low-pass filtering. These are intended to provide boundaries between evaluators, and to alert

when an evaluation may have been performed incorrectly.

This kind of evaluation is considered to be a better manner of evaluation if carried out cor-

rectly, but it can be quite costly and difficult to implement. Crowd-sourced variants have been

implemented[38][42], which greatly facilitate the possibility of performing subjective evaluation,

especially in terms of cost and time. They can be performed by any fit person with a pair of

headphones, and have been shown to be an effective alternative.

2.2 Generative Architectures

Automatic music generation remains one of the most challenging tasks in the audio domain and

has received a great deal of attention in the last year, with models such as the ones proposed by

Agostinelli et al.[13], Liu et al.[12], Donahue et al.[43], and Copet et al.[44] revolutionising the

field. At their core, music generation systems strive to create cohesive and sonically pleasing audio

sequences, often emulating the complexity and expressiveness of human-performed music. This

section provides an overview of the SOTA in generative models applied to music, summarising the

different approaches and architectures that have been proposed in recent years.

In terms of audio generation, most of the current SOTA work for audio generation are models

adapted from image generation, such as the GAN[45] or diffusion models [46], both of which have

demonstrated their ability to produce high-quality music snippets, capturing intricate structures

and dynamics. The recent surge in transformer-based architectures[47], particularly those that

harness the potential of neural codec tokens[48], has set new benchmarks in the music generation

task. These models combine the ability to process and generate long sequences of tokens from

transformers with the versatility and high sonic quality of neural codecs trained for sound com-

pression and reconstruction, to produce compositions with overarching coherence and great sonic

detail at the beat level.

We will now review the most relevant work in this area and conclude with an analysis of whether

the advances and breakthroughs in music generation have been, or can be, applied to the task of

source separation.
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2.2.1 Generative Adversarial Networks

GANs are a class of models developed for unsupervised machine learning. They are characterised

by the interplay between two sub-architectures: a generator and a discriminator. The generator, as

the name suggests, generates new data that aims to be indistinguishable from real data, while the

discriminator evaluates the authenticity of the data it receives, distinguishing between real data

and those generated by the generator. The two networks are trained simultaneously in what’s

known as “adversarial training”, where the generator constantly refines its outputs to fool the

discriminator, while the discriminator also tries to get better at its task. If trained correctly, over

time this “duel” should result in the generator producing high-quality synthetic data.

Specifically for automatic music generation, GANs have experienced an upsurge in adoption,

and many of the current state-of-the-art approaches implement at least part of their model and

training scheme with adversarial training. GANs have been used for purely generative audio

tasks[49][50][51], but also for tasks such as artifact correction and audio enhancement[18][19], and

crucially for our work, source separation enhancement[6].

The standout research on enhancement, by Su et al.[18][19], proposes a recursive network that

predicts clean Mel-Frequency Cepstral Coefficients (MFCC)s (coefficients associated to the short-

term power spectrum of the audio), which are then used to condition a WaveNet[52] with noisy

input to predict the output clean signal at 16kHz, which is then extended to 48kHz with a separate

bandwidth extension network. Theirs is a medium sized architecture (approximately 34 million

parameters) and their training on around 12 hours of audio reports high-quality results. The caveat

is that they only train on speech and do not provide a public implementation of their system.

The work of Schaffer et al.[6] proposes a source separation post-processor, termed Make-it-Sound-

Good (MSG), which both denoises and imputes, aiming to bolster the outputs of various source

separation models, whether they operate in the waveform or spectrogram domain. They train and

evaluate their model on the MUSDB18 dataset to improve the output of four popular separators

(DemucsV2, Wavenet, Spleeter and OpenUnmix) at a sample rate of 16kHz. Although their model

showed promising results, especially for bass and drums, the overall performance left a lot of room

for improvement.

Some of the challenges associated with GANs relate to their training complexity: training can

be unstable due to the balance between generator and discriminator, and the model can be very

sensitive to hyperparameters, requiring careful tuning. In addition, the training requires a lot of

computational power, and is greatly improved by large amounts of data, which is often not the

case for audio tasks. Particular complexities in audio generation arise from the need for temporal

coherence over a long track, as well as phase coherence, which is relevant to sound quality.
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2.2.2 Diffusion Models

Diffusion models are a relatively new paradigm in the generative deep learning landscape. Based

on the study of stochastic transitions, these models involve a process in which noise is progressively

added to an input signal, and the model attempts to learn to reverse this noise-induced alteration.

When introduced[46] for image generation, they claimed the potential to surpass the capabilities

of GANs[53].

Diffusion models have since found applicability in the realm of audio generation: some approaches

to this task have taken models designed for image generation and applied them to audio by working

with spectrograms[14][54]. On the other hand, some research initiatives have opted for a more

direct method, adapting the models to work directly with waveforms[12][55].

A first application of diffusion models to music source separation is manifested in the work of Plaja-

Roglans et al.[22], where they take inspiration from the diffusion models paradigm and introduce

a deterministic diffusion perturbation using the music mixtures. This perturbation is used to

progressively morph the isolated singing voice into its corresponding mixture, while the model

learns to reverse this process, attempting to extract the singing voice from the “noise” (mixtures).

By operating in the waveform domain, the method avoids the problems associated with phase

estimation, and another highlight of their work is the efficiency of the model, which uses fewer

parameters than its state-of-the-art counterparts, demonstrating the potential for lightweight yet

effective applications. A notable drawback is the lack of audio results or pre-trained weights,

although the full model architecture and training code are available.

The diffusion model-based approaches to audio generation are still in their early stages, so the

quality of the generated audio is currently struggling to compete with some of the more established

methods, although it is undeniably an exciting avenue of research that could soon be up to par in

terms of sound quality [56].

2.2.3 Neural Codecs and Codec-based Transformers

Finally, there is a new approach to generative audio modelling that uses Transformers[47] and

pre-trained language models for generation, and exploits the quantized intermediate representa-

tions of neural codecs as compact and meaningful tokens from which audio can be reconstructed.

This includes models such as MusicLM[13], SingSong[43], MusicGen[44], AudioLM[48][57], and

VampNet[58].

These works are based on research into neural codecs, a recent development, with architectures

such as SoundStream[16], EnCodec[17], the discrete version of RAVE[59], or the Descript Au-

dio Codec (DAC)[60], which achieves 90x compression while maintaining exceptional fidelity and

minimal artefacts. These codecs are a special case of GAN, where the generator is a Variational

AutoEncoder (VAE) with a residual quantization scheme for the latent embeddings. The models

present small differences in the architectures and training schemes, but the main factors are as
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follows: they present an encoder-decoder architecture with a Residual Vector Quantization (RVQ)

scheme for quantizing the encoded embeddings, trained with adversarial schemes on a variety of

datasets ranging from 40k to 280k hours.

RVQ is a technique used to compress the encoder output to a given bit rate. It adapts Vector

Quantization (VQ)[61][62], a technique that converts the encoder output into a bitrate-specific

format using a codebook of vectors, as illustrated in Figure 3. These codebooks can be learnt,

and included in training with the encoder and decoder, allowing integrated end-to-end training

through backpropagation. The encoded audio is then transformed into a sequence of one-hot

vectors, providing a compact representation that efficiently reduces the bit rate while retaining the

necessary information.
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Figure 3: Vector Quantization (VQ) example

However, traditional VQ has its limitations: quantizing the information of a multidimensional

embedding with a finite dictionary of embeddings and at a relatively low bit rate would force

the quantizer to lose either temporal definition or the resolution of the embedding. The iterative

approach of the RVQ method, uses multiple quantizers to progressively approximate the residuals,

ensuring a more accurate quantized output. The process is illustrated in Figure 4: the initial

audio vector is quantized, residuals are computed, and these residuals are then quantized through

a series of additional stages. This provides a nice balance between computational requirements

and coding efficiency, with the rate divided equally between the VQ stages, each of which uses its

own dictionary, which is refined using exponential moving average updates.

Training the RVQ has some relevant nuances: The k-means algorithm is often used to optimise

the initialisation based on the training data, under-used codebook vectors can be replaced with

current batch samples to try to improve codebook efficiency, and the number of layers is changed

during training (this is easy with the hierarchical structure of the RVQ) to avoid locking the bitrate

to specific bitrates, but also so that the learning of the codebooks follows the hierarchical design,

encoding basic information in the first layers and fine details in the latter.

In the case of EnCodec, which we will use extensively in our work, the RVQ layer consists of a

maximum of 32 cascaded vector quantization layers, each with a dictionary of 1024 codebooks

that quantize the generated 128-dimensional embeddings. The encoder consists of four blocks of
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Algorithm 1: Residual Vector Quantiza-

tion as introduced by Zeghidour et al.[16]

Input: y = enc(x) the output of the

encoder, vector quantizers Qi for

i = 1..Nq

Output: the quantized ŷ

ŷ ← 0.0

residual← y

for i = 1 to Nq do

ŷ+ = Qi(residual)

residual− = Qi(residual)

return ŷ

Q1

− Q2

− Qn

Figure 4: RVQ overview

residual convolutions, which are mirrored by the decoder. The codec training uses at least six

different losses, which will be detailed in our section 5.

DAC improves on EnCodec mainly through two advances: they identify a problem because of which

EnCodec does not use the full bandwidth it has available due to codebook collapse (where a fraction

of the codes are unused), and address it using improved codebook learning techniques introduced

in the Improved VQ-GAN Image Model[63]: factorisation and L2-normalisation. Factorisation

decouples code lookup and code embedding by performing the code lookup in a low-dimensional

space (8 dimensions) while the code embedding resides in a high, 1024-dimensional space, which is

essentially a code lookup using only the principal components of the input vector that maximally

explain the variance in the data. The L2 normalisation of the encoded and codebook vectors

converts Euclidean distance to cosine similarity, which is helpful for stability and quality. They also

address a side-effect of the quantizer dropout proposed in SoundStream, which actually degrades

full-bandwidth audio quality, and propose a low (but not zero) probability of codebook dropout

as a compromise to achieve better reconstruction.

Central to the usefulness of these models is their ability to produce meaningful tokens. Transformer-

based architectures have been successfully used to model natural signals such as images, textual

data, speech and music, and the key component of these works is the high-quality neural compres-

sion models that compresses the high-dimensional natural signals into lower-dimensional discrete

tokens.

In this way, the intermediate quantized representations of these models have been used for gener-

ative applications (see the example in Figure 5) by combining them with language models[48][57]

and as mentioned before, have proven to be very flexible and capable of generating new high-

quality musical content[13][43][44][58]. The field of generative audio modelling was given a major

boost by the MusicLM architecture by Agostinelli et al. which was trained on 280k hours of music,
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Figure 5: VampNet by Garcia et al.[58] as an example of codec token leverage with transformers

the resulting audio is of high quality and demonstrates the generative potential of this approach,

where they present three hierarchical transformers that go from “semantic” audio tokens to codec

tokens they can reconstruct into audio.

More specifically, MusicLM[13] follows the paradigm proposed in AudioLM[48], where a T5 transformer[64],

pre-trained on a variety of language tasks, was first fine-tuned to predict tokens from low-level

residuals, called “coarse” tokens, and a second T5 was fine-tuned to predict the posterior residual

(“fine”) tokens from the coarse ones (coarse-to-fine prediction). The more recent MusicGen[44]

architecture consists of a single language model that operates over multiple streams of tokens

but consists of a single-stage transformer LM together with efficient token interleaving patterns,

eliminating the need to cascade multiple models hierarchically.

The recently published VampNet paper[58] also proposes to work in a herarchical fashion, but

focuses on the relevant task of conditioning generation with music (rather than text). To do this,

they implement a variable masking schedule during training, which allows them to sample coherent

music from the model by applying different masking approaches during inference. The VampNet

transformer they propose is non-autoregressive and uses a bidirectional transformer architecture

that considers all tokens in a forward pass, allowing the model to “generate coherent, high-fidelity

musical waveforms with only 36 sampling passes”.

In summary, these models demonstrate that the use of neural codecs can lead to high-quality

generative audio modelling, opening up new possibilities for a wide range of applications. The

codec’s representation is leveraged for generative capabilities, even though they are designed to

reconstruct an audio signal, and a mixture of reconstruction and generative capabilities is exactly

what we want for our task of reconstructing sources from degraded estimates produced by a source

separation system.
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3 Preliminary Experiments

To determine which type of model to focus on, we listened to the reported audio results from

various SOTA models[19][14][51]. We also deployed two models from previous literature in search

of a baseline for our work. These were the diffusion-based separation model by Plaja-Rogalns et

al.[22] and the Make-it-Sound-Good post-processor by Schaffer et al.[6].

3.1 Diffusion-based Separation

The diffusion-based model for music source separation provided by Plaja-Roglans et al.[22] was

the main contender in its class. As stated in the SOTA section 2.2.2, instead of performing the

diffusion perturbation with noise, they introduce a deterministic diffusion using the mixture. In

this way, the model learns to reverse the process and extract the singing voice from the mixtures.

One issue with their work is that they did not report audio results, nor did they provide any

pre-trained weights. The model is a relatively small one, and training code was available, but with

some bugs and no inference function. We fixed the implementation and trained the model so as to

be able to hear what the results where like.

We performed only one experiment, which was to train the model for separation with J = 2, the

two stems being vocal and accompaniment. We trained on MUSDB18 HQ until convergence at

99750 steps, which took about 48 hours on a GPU. Example 1 on the accompanying website is

the separation at this final checkpoint, on a song from the MUSDB18 test set, which was our

validation data during training. As can be heard, the separation is not good, the voice is still

present in the accompaniment and vice versa, frequency filtering artefacts are very present, and

decent separation is only achieved when there is no voice singing (the vocal track goes silent and

the accompaniment is undistorted). These results, together with the reported audio results from

other diffusion model-based audio generation work, gave us the impression that the approach was

not mature enough and was not generating audio of sufficient quality for us to lean towards it. We

therefore stopped working with diffusion models at that point.

After considering the results reported in various works, it was decided that GAN-based models

would be our starting point. This decision was based on their superior sonic quality in comparison

to the results from SOTA diffusion models that are currently still grainy and noisy, and not as

high quality as some GAN-based generations.

3.2 Make-it-Sound-Good

One of the first steps in working with GAN-based models was to train the MSG[6] model by Schaffer

et al. on the output of just Spleeter, rather than on four different models as originally proposed

by the authors. This would allow us to focus on improving the errors of just one source separation

system, rather than the heterogeneous errors of many. We trained it for the enhancement of bass
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and of the whole accompaniment (a 2-stem separation variant).

3.2.1 Methodology

MSG proposes an architecture based on a U-net with 1-D convolutions, similar to DemucsV2[65],

and use adversarial discriminators similar to those proposed in HiFi-GAN[19], that adopts both

multi-period and multi-resolution tactics, and multiresolution spectrograms to condition their gen-

erator, which has about 30 million parameters. The overview of their system can be seen in Figure

6.

Figure 6: MSG paper architecture overview from Schaffer et al.[6]

Training the generator, they use three loss functions: first, there’s the loss of the Least Squares

GAN generator, a stable variant of the GAN loss which helps the generator to produce outputs

that the discriminator finds indistinguishable from the real data:

LG =
1

K

K∑
k=1

E
î
(Dk(G(ŝ))− 1)

2
ó

(2)

where ŝ is the raw source estimate from the separator, Dk, is the k-th discriminator, K is the total

number of discriminators, and G is the generator.

Then there is the deep feature matching loss, which is computed as the L1 distance between inter-

mediate activations of the discriminators when evaluating both real and generated data, ensuring
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that not just the final outputs but also intermediate representations of generated data are similar

to real data.

And finally, the generator uses a multi-scale Mel-spectrogram reconstruction loss. This loss helps

to refine the spectral content of the generated audio, ensuring that it closely matches the desired

spectral structure:

LMS−Recon =

M∑
i=1

L
(i)
stft(y, ŷ) (3)

Lstft(y, ŷ) = Lsc(y, ŷ) + Lmag(y, ŷ)

Lsc(y, ŷ) =
∥| STFT(y)| − | STFT(ŷ)|∥F

∥ | STFT(y)∥∥F

Lmag (y, ŷ) =
1

T
∥ log |STFT (y)| − log |STFT (ŷ)|∥1

where M is the number of Short Time Fourier Transform (STFT) losses, and each L
(i)
sft applies

the STFT loss at different resolution with number of FFT bins ∈ {512, 1024, 2048}, hop sizes

∈ {50, 120, 240}, and window lengths ∈ {240, 600, 1200}.

Regarding the discriminators, there are two main types, resulting in a total of eight different

discriminators: the multi-period waveform discriminators, of which there are five, are convolutional

networks acting on undersampled waves, so as to examine the waveform structure at different

temporal resolutions. The other three are multi-resolution spectrogram discriminators that focus

on different spectral resolutions of the audio content:

LD = E
[
(D(s)− 1)2 + (D(G(s̄)))2

]
(4)

where s̄ is the enhanced source estimate from the MSG generator and s is the ground truth source

audio.

Though their approach uses adversarial losses intrinsic to GANs, they abstain from conditioning

on a random input vector, we are thus considering a deterministic model (or at least a densely-

conditioned, not traditionally generative model).

For a deeper dive into the specifics of these loss functions and their underlying methodologies, one

can refer to the foundational works cited by Schaffer et al. in section 3 of their paper[6].

3.2.2 Experiments

We trained the model with the small variance that we only used the output of Spleeter’s separation,

so that the model could focus on improving only one type of sound error, and we also wanted to

take advantage of the fact that the MSG architecture is based on Demucs V2, so we would be

combining two different architectures that might complement each other. We trained the model
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for two tasks: bass enhancement and the much more complex accompaniment enhancement. Both

tasks were trained for 50 epochs (120k steps) on the MUSDB18 train set, which took just over a

day on a GPU, and at which point the losses flattened out for the validation set.

(a) Bass enhancement (b) Accompaniment enhancement

Figure 7: Spectrograms of audio examples 2 and 3, the input, target and output of MSG

The mean SDR went from 7.4 to 12.5 and from 4.4 to 8.7 for bass and accompaniment respectively.

These are good results, especially for bass, which was to be expected as their work reported bass

as one of the strongest improvements along with drums. Examples 2 and 3 on the accompanying

website, and Figure 7, show the input (Spleeter’s output), the target (ground truth) and the output

of the MSG system after 50 epochs. We can see and hear that, in the case of the bass, attacks and

high frequencies are recovered at the cost of adding new artefacts that appear as high-frequency

and unnatural noise. In the case of accompaniment, it is even worse: although the SDR goes up,

we don’t hear any noticeable difference in the output, apart from a few high-frequency artefacts.

These first experiments illustrate very well one of the main problems we are trying to address in

this work: the improvement of SDR metrics or distance metrics to the ground truth signal reaches

a point where they do not correlate with what we hear.

4 Generative Approach to Source Separation

4.1 Problem Formulation

As we explained in the introduction, we’re interested in refining or post-processing the estimated

source ŝi to belong to a class of “natural instrument signals”, this is, “natural bass signals” for

the bass approximation, “natural drums signals” for the drums, etc. Let’s call the set of natural

instrument signals SI . Our objective is to find an approximation s̄i such that s̄i is close to si in

terms of some metric or criteria and s̄i ∈ SI .
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This problem could be defined through a projection, where given a well-defined space SI of natural

instrument signals, we wish to find the projection of ŝi onto SI :

s̄i = ProjSI
(ŝi)

Ensuring that s̄ is the closest (in terms of Euclidean distance, or another appropriate metric) signal

in SI to ŝi.

Another way of formulating the same problem would be optimization-based, where we aim to

minimise the distance between ŝi and s̄i with the constraint that s̄i ∈ SI .

s̄i = argmin
s′i

∥s′i − ŝi∥

subject to s′i ∈ SI

(5)

Of course, the formulation’s effectiveness will largely depend on how well we can define the set SI

and the criteria for “closeness” between signals. In our case, signals from SI are obtained through

a network trained to generate “natural instrument signals”, and our pipeline could be trained to

receive ŝi or even x and process it to produce s̄i.

One last observation about this formulation is that evidently, in an ideal case, s̄i = si as si ∈ SI ,

and this should be the case when the approximation ŝi is extremely close to si. But it must be

taken into account that there are many “natural instrument signals” that are musically similar

even though their sound is different (in attack duration or timbre for example). Thus, with the

minimisation function not considering si at all, it is likely we will end up with a signal s̄i that is

further away from si than ŝi. s̄i may consequently perform worse in objective metrics than the

separated input to the system ŝi, but the goal is that it will sound “better” (more natural) than

ŝi.

4.2 Datasets and Pre-processing

The domain of music source separation has a variety of datasets, but MUSDB18[1] stands out

as a key benchmark. Serving as the backbone for numerous community initiatives (including the

Music Demixing Challenge[2]), the MUSDB18 dataset offers 150 full-length music tracks spanning

approximately 10 hours. These tracks represent a spectrum of Western music genres, predom-

inantly pop/rock, but also genres such as hip-hop, rap and metal. For each track, MUSDB18

provides isolated stems for drums, bass, vocals, and “other” category and the mix, which can also

be recreated by summing the individual stems, providing a comprehensive resource for separation

tasks.

In addition to the well-established MUSDB18, our research also uses the Bean dataset, a propri-

etary multi-track collection presented in the work by Pretet et al.[66]. Bean contains excerpts of
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25,938 songs, all approximately 30 seconds long.

In most of our experiments, we will use pre-trained source separation systems to pre-process our

data before inputing it to our systems. We have chosen to use two widely recognised benchmarks

in the field: Spleeter and Demucs[5]. Both tools have been previously introduced and discussed in

the SOTA, section 2.1, and given their performance and adoption in the community, they provide

a good foundation for our experiments.

4.3 Current Limitations

Procuring a strong foundation, we started our work by doing a thorough analysis of the quality of

the pre-trained source separation methods we will use. Our first step was to focus on identifying

and analysing the errors present in the output of Spleeter-Pro, a non-public version of the source

separation system developed by Deezer[3] to separate into two stems: vocals and accompaniment.

The main objective was to subjectively assess a limited number of Spleeter-Pro outputs in terms

of equalisation, timbre, volume, artefacts and bleeding, and for this analysis to serve as a start-

ing point for understanding the limitations and potential of Spleeter-Pro outputs, and to inform

subsequent decisions on the direction of our work.

This analysis identified several problems, such as loss of high frequencies, occasional artefacts and

bleeding in quiet sections, difficulties in handling more than one voice, and bleeding problems

with choral-sounding synthesizers. We also found that loudness was affected and that there were

abrupt changes in the Spleeter-Pro output, which could be related to the presence of a significant

amount of energy in the vocal section that was not compensated for when the accompaniment was

extracted from the compressed mix. An interesting observation was that the Spleeter-Pro output

often had parts that sounded perfect, while other parts sounded imperfect. The information from

the perfectly separated sounds could potentially be used to set a baseline for improving the quality

of the other parts.

The performance of Spleeter’s and Demucs’ 4-stem systems was also considered, but these systems

are already present in the community and their shortcomings have already been addressed in the

literature, as reported in the SOTA section 2.1 of this document. Suffice it to say that there is

definitely room for improvement, with the “other” track showing bleeding from the other stems,

some artificial artefacts and apparent filtering at some frequencies, possibly caused by masking

by other instruments; the drums sounding frequentially unbalanced, with not much mid or low

frequencies, a kind of underwater sound, and with noticeable volume changes; and the bass lacking

high frequencies, which greatly muffles the attacks and also gives the kind of submerged sound.

4.4 Experimental overview

Having arrived at a formulation of the problem, chosen the data and pre-processing tools, and

identified the limitations of these separation systems’ outputs, the next step was to explore the
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performance of previous works in generative audio modelling, to improve source separation. Several

types of models were considered, with the main choice being between diffusion-based models and

GAN-based models.

In the following sections, we delve into the experiments conducted and analyse their results. An

integral part of our work relies on subjective auditory perception. Whilst we present graphs

and figures that offer quantitative insights, many of our decisions and insights are based on the

qualities heard in the produced audio. For this reason, we have created a dedicated website with

audio examples that correspond to our experiments. Throughout this document, when we refer to

specific audio examples, we strongly encourage the reader to visit the website to experience the

audio first-hand. We hope this will add invaluable context and depth to our written analysis.

Website with examples: ivanlmh.github.io/DeezerATIAM

It is worth noting that all of the experiments discussed in the following sections were conducted

using a single NVIDIA RTX A5000 GPU, whether explicitly stated or not.

5 Codec Training

After establishing the baseline, our work’s focus was solely on methods using the outputs of the

4-stem systems (not 2-stem as was tested with the baseline). The rationale for this was, firstly, that

the baseline established for this was robust and provided a solid foundation for further exploration

and, secondly, that the 4-stem separation inherently presented a simpler starting point, reducing

the complexity that might arise from attempting to enhance more complex signals (such as the

whole accompaniment).

Our desire was to generate more pleasing sounds, so we wanted to distance ourselves from the

task of approximating a direct representation of the target signal, such as its waveform and spec-

trogram. While these representations are perfectly informative about the target signal, our goal

was to capture the intrinsic musical content without being bound by the limitations of traditional

approximations to the target. The increasing capabilities of token-based music generation sys-

tems, which have recently demonstrated exemplary auditory results, offered a good perspective

for achieving our goal by leveraging the codec’s latent space and exploring previously proposed

generation schemes conditioned in a variety of ways.

The idea of the “coarse-to-fine” model, which predicts the fine-detailed tokens from the coarse ones,

intrigued us greatly. We reasoned that if we had the coarse-level details of the target, predicting

its finer nuances might become more feasible, but in addition, the coarse representation of the

target might bear a resemblance to the approximate outputs we get from source separation tools

like Demucs and Spleeter. This hypothesis, if proven, could significantly bridge the gap between

the approximate and the desired output, allowing us to have natural-sounding music, even if it is

slightly different from the ground truth.
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Furthermore, we considered what would happen if instead of relying on generic codecs, we trained

our own codecs specifically to reconstruct a particular instrument. This dedicated system would

be optimised, not for a wide range of sounds, but for a very specific timbral and spectral space,

which could be the “natural instrument sounds” set SI for this instrument. Such a targeted

approach would intuitively allow for higher fidelity and precision in the reconstruction of that

specific instrument, reduced artefacts related to unwanted sounds, and possibly also make the

reconstruction more robust to noise.

Part of our experiments were dedicated to try and train one of these codecs. We were particu-

larly interested in the SoundStream[16] and EnCodec[17] codec architectures, which has shown

extremely good results in audio compression and synthesis tasks, but training them proved to be

a complex undertaking as there was no public training code for either, which severely limited our

options. In addition, the training process for such codecs is far from trivial, requiring large amounts

of data, computational resources and intricate fine-tuning of a variety of hyper-parameters. There

was also ambiguity about certain loss functions, as they were not all clearly detailed in the available

literature, so the practical difficulties of implementation were significant.

5.1 Methodology

All neural codecs have their own original ideas and novel proposals for the training target, which

is usually cleverly constructed to provide a combination of reconstruction and perceptual losses

and optimal training of the RVQ. Regardless of the specification, there are always reconstruction

losses to train the generator and a discriminator architecture. We will now introduce these main

losses as implemented for the EnCodec paper and shown in figure 8, trying to keep them as general

as possible.

Figure 8: Neural codec architecture with losses, presented in EnCodec by Defossez et al.[17]

In the generator, the reconstruction loss operates on the signal in both the time and frequency
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domains. While in the time domain (lt) the focus is on minimising the L1 distance between the

target and the compressed audio, in the frequency domain a combined L1 and L2 loss (ls) is

applied to the mel spectrogram over multiple time scales. This combination is designed to achieve

a balance between precision and stability.

A discriminator is added to attempt to improve the quality of the resulting samples, with a dis-

criminator perceptual loss term using a multi-scale STFT-based discriminator to capture structure

in the audio at different resolutions.

An adversarial loss lg (hinge loss on the logits of the discriminators) is used to penalise the generator

when the discriminator identifies real or generated samples. At the same time, a feature matching

loss compares the outputs of the discriminator’s internal layers for the target audio with the

generated audio, promoting better alignment and similarity between them.

The VQ commitment loss, as proposed by van den Oord et al.[61], acts as a bridge between the

encoder output and its quantized value. It encourages the encoder to produce outputs that closely

resemble values from a given codebook, similar to the idea behind k-means clustering.

The losses are mixed with constant weights or more sophisticated balancing methods, depending

on the architecture.

In our work, we looked at the open source initiative led by LucidRains[67], which aimed to develop

a community-driven version of SoundStream. Unfortunately, at the time of our experiments, it

hadn’t reached a stage where it could deliver satisfactory results.

Before working on EnCodec, our attention was drawn to the RAVE VAE’s, which has a “discrete”

version supposedly analogous to EnCodec’s, although its focus is not on error-free compression

and reconstruction, but on generative exploration. Caillon et al.[49] published a working training

pipeline, which gave us a more direct route to exploration.

RAVE’s discrete model training follows a two-stage methodology (shown in Figure 9), designed

to address problems in reconstruction caused by phase variations when computing losses on the

waveforms. The first stage, called the representation learning stage, focuses on training the encoder,

quantizer, and decoder for accurate reconstruction using spectral distance as the primary loss. The

next stage, called adversarial fine-tuning, freezes the encoder and quantization while the decoder

is trained using a GAN discriminator. The transition point between these two training methods

is determined by a hyperparameter.

Another characteristic of the discrete RAVE model is its strategy of appending noise to the 128-

dimensional latent space, effectively doubling the dimensions per frame. This inclusion of noise

acts as a form of Wasserstein regularisation (see page 67 in [59]), as such an addition affects the

training since the decoder has a 1D convolutional layer at its input. We performed training runs

both with and without this noise to measure its effect.

23



Figure 9: RAVE VAE architecture with losses throughout both training phases, grey components

are frozen and blue ones are training, presented by Caillon[59]

5.2 Experiments

SoundStream Training

Our first attempt was to train LucidRains’[67] implementation of the codec on a small amount of

data (the four stems of the MUSDB18 train set, representing about 40 hours of music); this proved

to be a difficult task, with little data but much diversity (sound types varied too much) the model

was unable to get more than noise, even after more than three days of training. A second attempt

was made to train the architecture on 10 hours of drum-only audio from MUSDB18, in the hope

that this less sonically diverse dataset would allow the model to produce realistic drum samples.

This converged after 36 hours, but even though we were practically overfitting on simple data, it

reached a point where the reconstruction was not adequate: although we were able to produce

drum-like sounds, the quality was poor and the samples sounded mechanical.

In an attempt to improve the sound quality of the reconstruction, and bearing in mind that the

SoundStream architecture is based on large encoders that often perform well when presented with

large amounts of data, we made a final attempt to train the architecture on 200 hours of drum-only

audio from the Bean dataset in the hope of producing better quality drum samples. This took a

long time to converge, and after 30k steps (four days on a GPU) the reconstruction was still quite

poor. Example 4 shows the reconstruction of random samples from the training set, in the last

training step we saved for both the model on MUSDB18 and the model on Bean.

At the moment of writing, some people in the community seem to have managed to train the

codec to do acceptable audio reconstruction, but it is still not up to the level of the pre-trained

codecs or the results reported by Soundstream. At the time of training, no one in the community

had reported getting good quality reconstruction with this architecture and pipeline, and after our

three attempts with different data, with the losses not giving us a clear idea of where the problem
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might be, we decided to move on.

RAVE Training

When training the discrete version of the RAVE VAE, we decided to focus on the bass sounds,

as RAVE has been proven to work correctly on harmonic signals and in some cases present high-

frequency artefacts on drum cymbals (which would defeat our enhancement purpose). Also, in our

posterior work of fine-tuning the codecs, we would focus on enhancing bass signals and recuperating

frequential information such as the bass’s attacks.

We first did a test run of 36 hours on the MUSDB train set, using the default configuration of a

128-dimensional latent space with concatenated noise, 16 quantizers, a codebook size of 1024, a

batch size of 8, and switching from the representation learning stage to the adversarial fine-tuning

stage at step number 200k. As can be seen in Figure 10, this converged, with a spike in total loss

at the time of the change to the adversarial stage, but later converged to the value it was at before

the switch. The audio results were good on a subset of audios from the train set that had been

separated for validation, but we ponder how this would perform on the Bean dataset.

We trained the codec on the Bean dataset with the same hyperparameters, but found that the

representation learning stage was not converging at step 200k, so we ran another experiment with

the stage change at 500k. This caused the model to converge in its representation learning stage,

but the unexpected observation was that the total loss went up in the adversarial fine-tuning

training stage and converged to the same point as the previous experiment. This shows that either

the representation learning was overfitting to the signal and the second stage is very necessary for

good audio quality, or the second stage was not working very well. Audio example 5 on the website

shows the reconstruction quality at the end of the representation learning stage, and at the end

of the adversarial fine-tuning stage, and as can be heard, the reconstruction improved, supporting

the decision to add an adversarial discriminator training stage. The question remains whether a

discriminator layer throughout the training, as is traditional in GANs, would have improved the

final result, but this option was not part of the RAVE pipeline, and since the codec is only a tool

towards our goal of reconstruction with enhancement, we decided not to proceed in this direction.

We did perform a fourth experiment in which we removed the noise associated with the embedding

and retained the long initial training stage. The result was that the learning of the representation

converged slightly faster, but the second stage then converged to a slightly higher value as can be

seen in Figure 10, perhaps illustrating the value of this method for regularisation. In any case, the

audio results did not show any noticeable difference.

Finally, to test RAVE’s adaptability, we trained the system to attempt to learn to reconstruct

the ground truth bass directly from Demucs’ bass output, and even from the unseparated mix

itself. Both methods diverged during training, due to the fact that some of the losses are designed

to enforce symmetry between the input to the encoder and the output of the decoder in the
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Figure 10: RAVE validation set losses

representation learning stage. It might have worked using a pre-trained model and training using

only the second stage, but as we decided not to continue working on RAVE due to its inferior

performance to EnCodec (who’s experiments we detail in the following section), this is left for

future work.

6 Codec Fine-tuning

So far we have described and detailed the architectures and processes from previous work that we

have implemented, adapted or deployed. This was a large part of our work as many of the systems

were not in a mature state of development. The following sections describe the customisations,

architectures, training pipelines and training objectives that have been developed during our work

and represent some of our most significant contributions to the field.

While the results from our RAVE experiments were adequate, they still didn’t surpass the re-

construction capabilities of EnCodec, and the latter model has been widely used in generative

applications with Transformers[44], making it an attractive option for our exploration. Although

training pipelines for EnCodec were not available, there was access to both its architecture and

a pre-trained model, so we decided to investigate how the codebooks were used and whether the

quantized intermediate representations had any interesting musical signal representation proper-

ties. We used the causal EnCodec model, operating at 24kHz and compressing to 24kbps, which

is the minimum compression, as the version that operates at 48kHz compresses to the same bit

rate. The compression provides us with tokens at 75 frames per second, encoded with 32 residual

layers with dictionaries of size 1024.

We started by analysing how the pre-trained model performed on encoding the stems of the

MUSDB18 train set. Table 1 shows the calculated mean SDR of the EnCodec reconstruction

over the whole dataset. We compute this source separation metric on the codec’s reconstruction
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(no source separation involved), so as to obtain the ceiling we will have for our performance in this

metric. This upper bound is quite high, especially for bass, and when the bass is mixed with drums

the overall performance also goes up compared to drums only, which is interesting and reflects how

compression scales with signal complexity.

Bass Drums Vocals Drums & bass mix Mixture

SDR 24.7 11.7 11.1 15.1 11.6

Table 1: Mean SDR of EnCodec over the 100 MUSDB18 train tracks

It should also be noted that the sound quality of the reconstructions was very good, with only a

few minor artefacts appearing in a couple of cases.

6.1 Compression Interpretability

To analyse the EnCodec model, we used the pre-trained model to encode drums, bass, a track

with the drum-bass mix, and vocal audio files. We examined the occurrence of codebooks for each

instrument by plotting a histogram (as shown in Figure 11). This facilitated the identification of

frequently used codebooks for each VQ layer. The fact that the codebook usage is actually quite

sparse, as reported in [58], is noticeable, and although for the posterior residuals the usage is more

spread out, in the figure we can see a number of codebooks that are never selected. Of course, the

fact that we only encode a few types of sounds in our experiments has to be taken into account,

whereas the encoder is trained to encode a huge variety of sounds. We hypothesised that some of

the most common codebooks, which differed greatly in frequency from the rest, might correspond

to periods of silence. To test this hypothesis, we created an artificial embedding from these most

frequent codebooks and found that our reconstructions did indeed produce silence.

Digging deeper into the generated latent space, we visualised the dimensionality reduction of

the audio embeddings using techniques such as MultiDimensional Scaling (MDS) and Principal

Component Analysis (PCA), as shown in Figure 12 and Figure 13a.

MDS and PCA are both popular dimensionality reduction techniques that transform high-dimensional

data into a lower-dimensional space while preserving specific relationships within the data. MDS

aims to preserve the pairwise distances between data points and is primarily used to visualise the

similarity or dissimilarity between data sets. PCA works by identifying and ranking the axes (the

principal components) that capture most of the variance in the data. By projecting the data onto

these axes, PCA also provides a means of reducing dimensionality, while retaining as much of the

original variance in the data as possible.

These visualisations allow us to appreciate the distinctions the model makes internally between

different audio samples. One striking observation is the clear separation of bass and drums in

this reduced dimensional space, while the mixed track logically overlapped with the individual
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(a) 1st quantizing layer

(b) 32nd (last) residual quantizer

Figure 11: Codebook choice occurrence for bass, drums and bass+drums

instrument samples.

PCA MDS
Bass
Drums
Drums+bass mix
Vocals

Figure 12: MDS and PCA on quantized embeddings for drums, bass, drums+bass, and voice

samples

We then examined the role of the different layers within EnCodec, in order to analyse how each

layer influences the separation we observed in the embeddings, and what their auditory effects

were. Visual representations of the dimensionality reduction of these coarser embeddings showed

us how the first two residuals had already achieved a good separation, i.e. were able to represent

the signal, and also how the “fine information” of the last layers became random when separated

from the previous residuals (see Figure 13c). As part of our experiments, we toyed with the idea

of manipulating the latent space, specifically by shifting samples located in the bass latent region
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towards the silent region to achieve a rudimentary bass removal, but the results for this naive

approach were less than stellar.

PCA MDS
Bass
Drums

(a) 32 RVQ quantization
PCA MDS

Bass
Drums

(b) 2 RVQ quantization

PCA MDS
Bass
Drums

(c) Quantization of last 16 layers

Figure 13: MDS and PCA on quantized embeddings for drums and bass samples

6.2 Fine-tuning EnCodec for Enhancement

The analyses and modifications of the EnCodec model and its latent space could allow us to better

understand its capabilities and limitations. We could also pose the question of whether it would be

possible to predict the tokens for the ground truth instrument signal, from the output of Spleeter

or Demucs (the separated signals), and from the ground-truth tokens a great reconstruction would

be possible.

As we move away from traditional metrics such as the distance between spectrograms or the

ubiquitous SDR, we try to avoid models that would impose a loss on the waveform and spectrogram

representations. This approach is parallel to the idea behind FAD[8] and has also been present in

recent generative approaches[68].

6.2.1 Methodology

To this end, we carried out experiments with variants of the codec architecture and with different

losses. The architecture in Figure 14 shows an overview of all the components of our pipeline, and

these component are combined in different ways which will be detailed in the Experiments section
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6. We will now describe the architecture and losses’ variants, so that in the experiments section

we can focus on the practicalities of the implementations and tests.

Intermediate

Layer

RVQ

MSE

Encoder Decoder

Warm

encoder

Input to

enhance

Ground

truth

Enhanced

output

Figure 14: Codec architecture with the optional intermediate layer (grey elements are trained

during finetune)

Variation in EnCodec’s Architecture:

1) Frozen codec with warm encoder (FCWE): This consists of adding a second trainable (warm)

encoder to the codec, exactly the same as the original, which will receive the separated input,

while the original will receive the ground truth. It can be initialised with the pre-trained or

random weights, and will be trained to obtain the same embeddings or tokens (depending on the

loss) as those obtained from the ground truth.

Encodec’s encoder is a convolutional structure that starts with a 1D convolution with 32 chan-

nels and a kernel size of 7. This initial convolution is followed by 4 convolution blocks. These

blocks consist of a single residual unit that leads to a downsampling phase performed by stepwise

convolutions (kernel size is twice the step size S, set to [8, 5, 4, 2]). This residual unit contains

two convolutions with kernel size 3 and a skip connection, and the channel capacity doubles each

time it is downsampled. Following these convolution blocks, EnCodec incorporates a two-layer

LSTM “for target sequence modelling” and concludes with a 1D convolution layer with a kernel

size of 7 and 128 output channels. Non-linearity is introduced using the ELU activation function,

complemented by weight normalisation techniques.

2) FCWE + intermediate dense layer: Same as the previous approach, but we add a dense layer

that receives the embedding (warm or not) from the separated input and attempts to predict the

correct categorical token, at all the residuals or only at a few of the first ones.

From a high-level perspective, the dense module acts as a compact classifier, translating embed-

dings into categorical probabilities. It is tailored to handle the 128-dimensional embeddings and

translate them into a sequence of 32 vectors, where each vector has 1024 elements, each of which
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represents the probability that the embedding belongs to a particular category. Internally, the

module first passes the embeddings through a linear layer that compresses the 128-dimensional

embedding down to an intermediate 256 dimensions, applies a ReLU activation function for non-

linearity, and passes the data into another linear layer that expands the 256 dimensions into a

composite tensor comprising the product of the number of residuals (32) and the number of cate-

gories (1024).

3) FCWE + intermediate transformer: In this case, the intermediate layer is a small transformer

that receives the embedding from the separated input, and attempts to predict the embedding

from the ground truth, which can be the quantized embedding or before quantization.

The transformer consists of a positional encoding layer and three transformer encoder layers, which

are responsible for transforming the input embeddings. It uses positional encoding at the input

to gain an understanding of the sequence order (relevant because of the sequential nature of our

data). The positional encoding module achieves this by mathematically constructing a mixture of

sine and cosine functions which are added to the embeddings to give the model a sense of order in

the data without altering the original information.

Each transformer encoder layer is defined by a particular model dimension and the number of

attention heads. In our configuration, we’ve chosen 128 dimensions for our embeddings, with 4

attention heads. One of the defining aspects of the model is its autoregressive decoding approach.

As it processes the embeddings, it takes into account not only the current step, but also all previous

steps. This autoregressive nature ensures that the predicted output for a given step is informed

by all previous steps, thus capturing the essence of the entire sequence.

Loss Functions:

a) Mean Square Error (MSE) loss: Mean squared error between the derived embeddings and the

ground truth embeddings, both post and pre-quantization.

MSE(e, ē) =
1

n

n∑
i=1

(ei − ēi)
2

Where e is the ground truth embedding and ē is the predicted embedding.

b) Categorical CrossEntropy (softmax loss): Calculates the disparity between the codebook selec-

tion probabilities across layers.

H(c, p) = −
∑
i

ci log(pi)

Where c is the target (ground truth) vector, a one-hot vector with a positive class and 1023 negative

classes, and p is the predicted distribution.
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c) Residual loss:

The Residual Loss we propose, presents a scheme wherein the embedding and the residuals are

progressively approximated using quantized codebooks, layer by layer. The residuals are approx-

imated by the sum of the codebooks for the layer, weighted by the probability of that codebook.

This provides a differentiable approach to residual layers, essential for backpropagation and opti-

misation during model training. We pose:

p0i = softmax(
||c0i − v0||22

τ
) =

e−
||c0i−v0||22

τ∑
j e

−
||c0

j
−v0||22
τ

(6)

v1 = v0 −
∑
i

p0i .c
0
i (7)

pki = softmax(
||cki − vk||22

τ
) =

e−
||cki −vk||22

τ∑
j e

−
||ck

j
−vk||22
τ

(8)

vk+1 = vk −
∑
i

pki .c
k
i (9)

ck = argmini∈[1,N=1024]||cki − vk||22 (10)

• ck the quantized embedding at layer K

• τ a temperature parameter,

• p0i the probability of codebook i in the residual 0,

• c0i quantized codebook i for residual 0,

• v0 = e the embedding from the encoder,

• vj the residual embedding at residual j

Here the softmax operation ensures that the probabilities sum to one, and the negative sign in the

exponent encourages the selection of codebooks that are closer to the embedding. The temperature

parameter controls the sharpness of the probability distribution; a lower τ makes the probabilities

more peaked, tending towards a single codebook, while a higher τ makes the distribution smoother.

What we call the Residual Loss is thus calculated as the sum of the classification loss (CrossEntropy

loss) calculated for each layer based on the vector pk. Allowing us to calculate a token-oriented

classification loss but directly using the encoder’s embedding, without the need of an intermediate

layer that receives an embedding and outputs the probabilities.
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An inherent challenge, very present in this last loss, but also an issue with the other implemen-

tations, is the propagation of errors across layers. If the approximation is suboptimal in earlier

layers, the compounded residual error could introduce challenges in later layers.

d) Adversarial (discriminator) loss:

We also try to improve the training with adversarial components, in particular by integrating

a discriminator. The role of the discriminator is to differentiate between real and fabricated

embeddings, and to guide the encoder to produce more authentic representations.

The discriminator architecture is relatively simple: It consists of two linear layers interleaved by

a ReLU activation function. The input embeddings, each of size 128, are first projected via the

first fully connected layer to a hidden representation of size 64. The subsequent ReLU activa-

tion introduces non-linearity, and the resulting embeddings then pass through the second fully

connected layer, which reduces their dimensionality to a single unit. This singular value is then

passed through a sigmoid activation, ensuring its range between 0 and 1, representing the proba-

bility that the given embedding is genuine. The entire discriminator model is trained using Binary

Cross Entropy (BCE) loss, which pushes it to make accurate binary distinctions between authentic

and simulated embeddings.

We combined these variants in architecture and loss in diverse ways, aiming to find the optimal

configuration. A detailed account of these combinations and their corresponding results follows in

the Experiments section.

6.2.2 Experiments

The previously introduced architectures, variants of the EnCodec architecture, and losses, were

combined in different ways and trained on the MUSDB18 train set and/or on Bean. The table 2

shows how we combined them, and we will now go into detail about the experiments we ran and

the results we obtained.

Losses\Architectures FCWE FCWE+dense FCWE+transformer

MSE ✓ ✓ ✓

Softmax ✓

Residual ✓

Discriminator ✓

Table 2: Tested combinations

Before delving into the experiments and variants expressed in Table 2, we will state some char-

acteristics and parameters that were maintained across the experiments, and which we hope will

help understand the upcoming experimental descriptions.
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First of all, it is crucial to emphasise our distinction between the embeddings (those obtained

directly from the encoder), the tokens (selected codes from the RVQ dictionaries, which can be

thought of as integers from 0 to 1023 or as one-hot encoded vectors of dimension 1024), and the

quantized embeddings (decoded with the RVQ from the token). When we talk about the ground

truth (GT) embeddings, these are always derived from the frozen encoder, while the others are

usually derived from the warm encoder.

For the experiments with MUSDB18, we refer to MUSDB18’s train set (unless otherwise stated),

from which we strategically reserved five songs and treated them as our validation set. Our first

set of experiments -the first four to be exact- used Spleeter as the separation tool. For subsequent

tests, however, we switched to Demucs because of its superior performance.

It is important to note that the audio examples cited in this section and displayed on the website

are predominantly from the validation set mentioned above, with a few exceptions such as the

overfitting experiments, which will be explicitly stated.

In terms of our optimizer and learning rate hyperparameter, we always use Adam, with a default

learning rate of 0.001, although in some cases we tested a more conservative 1×10−4 to potentially

smooth the training dynamics.

Going forward, it is important to keep these nuances in mind to ensure a full understanding of our

experimental approach and subsequent results.

Experiment N1: Prediction of tokens with dense layer

Our first approach was to insert an intermediate dense layer and train it in the classification task of

predicting the GT tokens for all the residuals from the embeddings of the separated input (“input

to enhance” in Figure 15). This being a classification task, we use the softmax loss on the predicted

probabilities. The encoder was maintained with frozen weights and there was no parallel encoder,

as can be seen in Figure 15a.

This was done on 16-second segments of bass recordings from the train set of MUSDB18. The loss

converged, but the results were unintelligible; randomly noisy signals, with the dense architecture

apparently unable to select tokens with any correlation to the input signal.

Experiment N2: Adding MSE Loss

Our next step is to try to help the model by inserting the parallel encoder (initialised with the

same weights), allowing it to update its weights, and adding a second loss between the embeddings

of both encoders (see Figure 15b). Because of the different ranges of the two losses, we multiplied

the latter by 100 so as to have them in comparable ranges†:

†This is a common practice in the training of multi-loss models, though there are more sound ways of balancing

the losses.
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Figure 15: Training setup for experiments

Total Loss = Classification Loss+ 100×MSE loss

This new approach allowed the classification loss to converge to a much lower value, but the audio

output was still very poor, producing more harmonically structured sounds, but still completely

uncorrelated with the input.

To test whether the dense layer was too small, we did another test run where we overfit on many

different segments of a single song in the dataset. We reconstructed the output from the selected

tokens and also from the embeddings of the warm encoder, the interesting fact being that while the

reconstruction from the predicted tokens was still terrible, the reconstruction from the embeddings

was a decent reconstruction of the input.

This means that not only is the encoder not varying much from its initial state, but the intermediate

layer is totally failing at doing the prediction.

Experiment N3: Removing intermediate layers

Following the previous results, in order to try a simpler approach that wouldn’t be hindered by

the training of the dense layer, which doesn’t seem to be powerful enough for the task, we removed

the intermediate layer and kept the parallel encoder, we trained this new encoder to predict the

embeddings on MUSDB18, and we stopped training when the validation loss stopped going down

(about 36 hours).

With this approach, we started to see a construction of the target signal where the attacks were

mildly reconstructed but without a very natural sound (more noise-like), and some new high-

frequency dither-like artefacts appeared. You can hear the reconstruction in example 6, a sample
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from the validation set.

Again, we repeated this experiment but trained to overfit on a single song, and we also adapted

it to always train on the same 16-second segment to try to understand the encoder’s ability to

generate. Of course, both runs reconstructed the target songs much better than when using the

whole dataset, but both showed an interesting insight: the encoder was good at filtering artefacts

and recovering some of the high frequencies (at the expense of noise), but was not good at the

task of adding strong and clear attacks or other missing frequency information, as can be heard in

example 7, which shows the reconstruction of the segment we trained on.

We repeated this training on the drums of MUSDB18 to check that the approach was still gener-

alisable. The training progressed in a similar way, and for the drums we again observed the clear

phenomenon of the model struggling to add missing frequency components. It was quite adept at

filtering out some artefacts, but it still added some noise and failed to generate much new content.

To further explore this hypothesis that the system was good at filtering (up to a point), we ran

a small test in which instead of inputting the output of the Spleeter, we input the ground truth

with random white noise added, thus training the warm encoder to denoise the input. Example 8

shows that the model performed this task with reasonable success, although there was still noise

over the sound of the bass notes, which is to be expected, as there is actually also audible noise in

the quantized target.

In order to see if we could get the encoder to train towards a more generative state, we also

tried training for bass reconstruction from the Spleeter output, but initialising the parallel encoder

randomly instead of using the pre-trained encoder weights. This did not work well, as it converged

to a point with much higher loss, and the audio results were unintelligible.

Experiment N4: Adding the Residual loss

Under the hypothesis that the MSE loss was not sufficient to force the encoder to learn the

correct embeddings, we decided to try another token-oriented approach, but without the need

for an intermediate layer. This is the Residual loss that we explained in the methodology, where

we approximate the residuals by the sum of the embeddings in the dictionary weighted by the

probability of that embedding.

With this loss, we have a loss for each layer (which we add to get a total loss), and we also compute

the accuracy of token selection at each layer, which gives us a good insight into how our model is

performing. We train to overfit on a single bass song and find that, once again, the loss does not

produce gradients strong enough to force the encoder to create a cleaner output. In terms of sound

quality, this approach performs worse than the previous experiment, as can be heard in example

9 of our website.

If we look at the accuracy of the token selection, we see a slight improvement throughout the

training: the first two layers do not improve much from the starting point, with an accuracy
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Figure 16: Training setup for experiments

of around 60% and 25% respectively, but the posterior layers gain around a 2% improvement in

classification, which is not negligible if we consider that the accuracy is normally very low (between

2 and 8%).

Taking into account these new findings of low performance in token selection, we switched from

using the Spleeter output to the output of Demucs v4, which reports a better performance in the

4-stem separation task. We repeated the training in the same way, but with the different input,

observing that the accuracy went up to 67% for the first layer, and improved by 2 or 3% for the

subsequent layers. However, we continued to see the phenomenon of the encoder not being able to

improve its performance, with the losses stagnating close to their initial values.

Experiment N5: Switching to Demucs

It appeared that this loss did not help our model to improve, even in the case where we were

overfitting on one song. To confirm this, we repeated experiment N3 but with the Demucs input

and recorded the token selection accuracy, and found that the accuracy was slightly better in this

case, by 5% for the first layer and around 1% for the rest. This was even more noticeable when

we trained on the whole MUSDB train set, and noticed that in fact, the accuracy for the whole

data set was much worse: with an average of about 25% for the first layer and less than 1% for

the others.

When this last experience was repeated on the drums dataset, the results were much better,

improving the accuracy of the first layer from 25% to 55%, and the posterior five layers to over

10%. The problem with the drums reconstruction is that the errors in the higher layers seem to

introduce harmonics in the high frequencies when trying to recreate the spatial component in the
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drum recordings.

Experiment N6: Testing more losses

Before changing the architecture, we made two other attempts to add losses to the MSE loss that

would help us to force the model closer to the goal, these were to use a Residual loss, but only

on the first four layers of the RVQ, and then to also add the discriminator loss obtained from the

simple discriminator that distinguishes between the embeddings obtained from the ground truth

by the frozen encoder and the embeddings generated by the trained parallel encoder from the bass

or drums separated with Demucs.

We hoped that these changes, especially the latter, inspired by generative model approaches, would

allow the model to add missing components to the separated tracks, but there was virtually no

change in the MSE distance between embeddings, in the token accuracy, or in the generated audio

quality.

Experiment N7: Adding a Transformer

At this point, we had exhausted most of our options for using only EnCodec’s encoder to generate

the embeddings and achieve decent results in reconstructing the ground truth. We were still

aiming to get a good accuracy on the coarse tokens that would allow posterior reconstruction

using a coarse-to-fine architecture, but at the moment our best accuracy even for the first layer

was only 25% on bass and 55% on drums.

Most SOTA that use RVQs for generation are based on transformer architectures, so we decided

to implement a small transformer as an intermediate layer. Instead of using a token translation

paradigm, where the transformer received the tokens of the separated signal to predict the tokens

from the ground truth, generating its own embedding space in the process, we decided to take

advantage of the meaningful embeddings generated by EnCodec and input them to predict tokens,

in the same way as we had done with the dense intermediate layer, but in this case, focusing only

on predicting the first fine token.

Training was done on the bass from the MUSDB train set, using the softmax loss. It achieved

60% accuracy on the MUSDB train and validation subset, but the audio reconstruction from this

first layer was terrible, so we tried predicting the first four quantizers (the first four quantizers are

often referred to as the coarse tokens[12][58]). The accuracy here was low, dropping to an average

accuracy of 10% across the four layers, and the reconstruction was still unintelligible.

We tried to improve performance by changing hyperparameters such as batch size, using a larger

transformer, allowing the parallel encoder to train as well as the transformer, or loading a pre-

trained transformer that had been trained to do the quantization (go from the GT embedding to

the GT token), but this was not possible.
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Figure 17: Training setup for experiments

Experiment N8: Final experiment with transformers

We believe that the bad performance had to do with how the transformer handled the transfer

from the embedding space to the corresponding tokens in its internal decoder. The relatively small

amount of data available, coupled with our limited experience with transformers - a notoriously

complex and difficult-to-train architecture - was also a major source of difficulty. We decided to

target the embeddings of the EnCodec encoder directly, rather than the tokens. In this way, we

relied on an internal embedding-to-embedding layer, hoping that the transformer would team up

with the encoder and provide us with an architecture that offered certain generative capabilities.

We ran two variants of this experiment, one with the transformer receiving the embedding from

the original frozen EnCodec encoder and predicting the ground truth embedding from the same

encoder. The other was with the previously used parallel encoder, also trained. The best results

were obtained with the latter method, with an average accuracy over the 32 quantizers of around

10%, but the results do not represent a significant improvement, as can be heard in example 11.

In summary, the process of fine-tuning EnCodec for audio enhancement has presented numerous

challenges. Despite extensive experimentation with different architectures and losses, achieving

high-quality sound reconstruction remained elusive. Further research and exploration of more

advanced models or techniques may be essential to achieve the desired results.

6.3 Mixture Separation Approach

From the moment we noticed the good filtering capabilities of the models, we decided to explore

the avenue of filtering with the encoder, instead of attempting enhancement. Our first attempt was

to input white noise and see how the system learnt to generate bass sounds. We trained this using

the MSE loss and overfitting on a single bass song. The results were rhythmic outputs but no clear
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bass sounds, and as the potential of this test was limited, we moved on to the more relevant task

of inputting the mix and using the system to filter and output an instrument; basically performing

the separation with the encoder.

This new approach performed decently when trained on the MUSDB train set using the basic

FCWE architecture with MSE loss. Examples 12 and 13 show the separation obtained on samples

from the validation set for both bass and drums.

We then ran the same experiments as we had done with the separated signal as input, but with the

mixture as input. We ran the same configuration as in Experiment 6 (with the discriminator), which

again did not improve performance. The addition of the transformer (embedding-to-embedding),

however, gave an improvement in the generated sound, with fewer artefacts in the generated output.

Examples 14, 15 and 16 show the results obtained for the separation of bass, drums and the other

track.

The transformer architecture gives the cleanest results, so we decided to test it with two other

encoders: the RAVE codec, which we had trained ourselves for bass reconstruction, and the DAC

codec, which was brought in towards the end of the internship[60].

We trained the architecture using the RAVE codec and its 16 layer RVQ instead of EnCodec,

with the intermediate transformer layer, on MUSDB using the MSE loss. The reconstruction

quality (which you can hear in the quantized target of example 17) was worse than EnCodec’s

reconstruction, so our ceiling is a little lower. The separation itself was also slightly worse, as

you can hear in the examples. We think that this may be due to the Pseudo Quadrature Mirror

Filters (PQMF) layer at the input and output of the model, which is part of RAVE’s focus on

exploring musical changes in latent space, rather than just timbral changes. Also, since the encoder

hasn’t seen any non-bass music in its training, it is unlikely to be able to extract the relevant

information from the input mix, making reconstruction more difficult.

With the DAC encoder we did the same with its 14 quantizers, achieving good results, but we also

experimented with changing our target to be the quantized embedding using only 4 quantizers, in

order to get a higher accuracy on the first 4 layers, which are the coarse tokens for the VampNet

coarse2fine transformer [58], this improved the performance. A final experiment was carried out

without the transformer in order to be able to insert the separating encoder into the VampNet

architecture.

7 Token Prediction with Transformers

Transformers, well known for their contributions to natural language processing, have often been

used for translation tasks. Given the idea behind our work of aligning separated audio codec tokens

to ground truth tokens, it was easy to view the task through the lens of a translation problem.

Transformers are also present in the coarse-to-fine paradigm presented in AudioLM, proving their
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suitability for such tasks.

While we’d already tried to incorporate a transformer as an intermediate layer, focusing on re-

fining the embedding itself, we also decided to try a more direct translation approach, where the

transformer would receive the tokens derived from the separated audio, process them, generating

its own embeddings, and output tokens that matched the ground truth. Despite our hopes, this

approach did not produce satisfactory results.

However, towards the end of the internship, VampNet presented a transformer specifically designed

for the coarse and coarse-to-fine prediction tasks (see Figure 5). Accompanied by training and fine-

tuning codes and pre-trained models, it was an exciting avenue to explore. To assess its potential,

we trained these transformers on our Bean dataset. We also fine-tuned the DAC codec used for

bass extraction in the same manner we had done with EnCodec and RAVE.

Experiments

Using the VampNet architecture presented in the SOTA section 2.2.3, we sought to approach the

challenge as a token translation task, capitalising on the effectiveness of transformers.

Despite the recognised power of transformers, our first-hand experience with them was limited.

Their complex architecture, combined with the nuances of hyper-parameter tuning, made them

somewhat difficult to train.

Initial attempts to fine-tune a T5 architecture for token prediction were unsuccessful, as were our

efforts with the architecture formulated by LucidRains.

However, a turning point came towards the end of the internship with the release of the VampNet

transformer. This prompted us to start some experiments such as training from scratch, fine-tuning

the model and exploring its reconstruction capabilities.

Below are summarised experiments using the VampNet transformer models (specifically the coarse

prediction model and the coarse2fine prediction model). It is worth noting that VampNet uses

the Descript Audio Codec and its associated tokens. The audio samples in the examples were

taken from the MUSDB18 training set, which was not part of the training set of the VampNet

transformers, and served as the validation set.

Experiment 1: Reconstruction using Descript pre-trained models (baseline)

This experiment was anchored on VampNet transformers that had been previously trained on

different sound types.

We have listened to and displayed the results of the following two experiments:

• Reconstructions where the latter 10 fine tokens are predicted based on the coarse tokens of

the input only.
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• Reconstructions where the 2nd, 3rd and 4th tokens are derived from the initial token using

the coarse model, and the subsequent 10 tokens are then predicted from these primary four.

Table 3 shows the objective separation metrics computed on the outputs of the two experiments

and compared with the input’s score, and with the input’s reconstruction’s (using the DAC codec

and its 14 tokens) score. The metrics were computed over 10-second segments extracted from the

100 songs of the MUSDB train set.

Input

(Demucs)
Reconstructed

Pretrained VampNet Bass VampNet

c2f 1 coarse c2f 1 coarse

SDR 10.62 10.03 8.32 8.31 7.44 7.40

SAR 11.46 10.83 9.13 9.14 8.52 8.45

ISR 16.72 16.32 15.62 15.61 14.87 14.85

Table 3: Objective separation metrics on VampNet reconstruction. Input separated w/Demucs

The reconstruction here presented some interesting characteristics, that you can hear in Example

18 on our website. The first we noticed was that the input had some minimal bleeding from drums

and other instruments, but the reconstruction had none of this: clearly the bleeding was in the

fine tokens and when reconstructing them from the coarse, there was none of this bleeding. The

second one, was that even with the reduction of this bleeding, and with a very good sounding

reconstruction, that was to our ears at least equal to the separated input. As can be seen in

Table3 SDR went down, as the reconstructed fine tokens had nothing forcing them to reconstruct

the target signal.

One pitfall we heard is that the reconstruction sometimes added sounds that do not belong to the

family of sounds that could be produced by a bass. This is of course understandable, as the model

was trained to reconstruct music, and when it receives bass at the input, it has no reason to not

generate other instruments in the background. This could be addressed with the next experiment.

Experiment 2: Reconstruction using coarse and coarse2fine transformers trained from

scratch on Bean

We repeated the same two experiments, but with a VampNet model trained exclusively on pre-

dicting bass tokens, thus offering a narrower range of sound prediction.

Again we observed an improvement in the sound, in this case it was even better because it recon-

structed a clear-sounding bass, and in this case with no non-bass artefacts. The sound quality of

the reconstruction was not as great as with the pre-trained model(though it was extremely good),

and again the SDR went down when compared with the input (Demucs’ output), very possibly

because of this.
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Experiment 3: Training coarse and c2f models from scratch on Bean with input from

Demucs and target from GT

In this experiment, we attempted to train the transformers to do the token domain translation,

from the separated input to the ground truth, so as to perform the enhancing in a deliberate

fashion. We did not alter the VampNet training pipeline for this, only the target tokens would

now be different from the input, keeping the masking scheme they propose. Unfortunately, the

model training for this experiment encountered a snag in its training. Despite several attempts to

fix it, the problem persisted. Addressing this challenge is planned for future research.

Experiment 4: Reconstruction using the codec fine-tuned for separation

Our final experiment with VampNet was to repeat the first two reconstruction experiments, but

instead of using the pre-trained DAC codec, we replaced it with our fine-tuned DAC codec, which

we had fine-tuned to receive the mixture and filter out the instruments to perform bass extraction.

In this way, we input the mixture, and in the output we got the extraction done by the codec’s

encoder, enhanced by VampNet’s coarse and coarse2fine predictions.

Input

(Demucs)
Reconstructed

Pretrained VampNet Bass VampNet

c2f 1 coarse c2f 1 coarse

SDR -0.41 2.76 2.84 2.83 3.05 3.05

SAR -6.79 0.55 0.48 0.49 0.31 0.38

ISR 5.74 4.21 4.63 4.66 5.52 5.51

Table 4: Separation metrics on VampNet reconstruction from mixture, separated w/DAC encoder

The results were decent: the simple reconstruction of the separated bass using only the codec

already improved the SDR compared to the mixture, and the interesting fact was that the recon-

structions obtained using the VampNet transformers improved the SDR even more in this case.

Obviously, the reconstruction is still very much conditioned by the extracted bass signal, and since

the separation with the encoder is not as good as that obtained with Demucs, the predicted coarse

and fine tokens improve the separation, not only in terms of sound quality but also in terms of

objective metrics.

This approach is a first attempt at what could be an end-to-end approach to source separation

following the paradigm proposed in our work.

8 Discussion

Having chosen to work on such an active topic as neural codecs and language models, our choices

throughout the internship were affected by a large amount of late research in the field. MusicLM

was published only a month before the start of the internship, MusicGen just after the halfway
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point but without training code, and VampNet only six weeks before the end of the internship.

Throughout our experiments, we pursued various approaches and methodologies with the goal of

achieving a viable token prediction mechanism for audio reconstruction, enhancement and sep-

aration. Upon reflecting on the experiments and the results obtained, several key observations

emerge.

One of the first observations is that the existing methods for sound separation enhancement, which

follow the lines of state-of-the-art source separation techniques, does not notably improve the sound

quality, despite their influence on the SDR score. This underlines the inherent challenges of the

task and questions the extent to which existing benchmarks can be pushed further.

With this in mind, we set out to explore a new avenue using token-based audio generation. The

aim was not just to approximate the ground truth of separation, but also to improve the sound

quality, even if it meant deviating from the ground truth. However, the path to achieving this

paradigm of separation enhancement proved to be a complex one.

Our proposed approach for mixture separation presents a potentially intriguing prospect. The

incorporation of an encoder as the primary driver for sound separation offered an interesting path

for end-to-end separation, and, when combined with the transformer, yielded encouraging results

that could certainly be further improved.

We explored numerous architectural variations, but the level of success did not always correspond

to our efforts. The field of token-based audio generation is still at an early stage; in an ideal

scenario we would have had open-source transformer architectures with training pipelines, which

whilst intended for different tasks such as unconditional music generation or speech generation,

would have greatly expedited our progress. Adapting these models to our specific needs would

have been a simpler undertaking than constructing anew or building from non-operational work

in progress systems, especially given our limited prior experience.

Our trials with the T5 transformer and the architectures implemented by LucidRains did not

produce the desired results. Although the VampNet transformer holds great promise for future

developments, it came too late for us to explore in depth within the timeframe of the internship.

If we had been able to allocate more time and examine these models more extensively, our account

might have been very different.

Looking forward, it’s clear that there are still many unexplored avenues in the field. The in-

tersection of token prediction, sound reconstruction and enhancement remain fertile ground for

innovation. While progress has been made, the road ahead is laden with potential and hopefully

invites future research to continue in this direction.
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9 Conclusions

The path of this research has been both rewarding and challenging, delving deep into the realms of

token-based audio generation and codec-based architectures for sound separation and separation

enhancement.

9.1 Main Contributions

In this study we have set out to confront what we believe are the prevailing challenges encountered

within the domain of source separation. One of the main contributions within this dissertation

resides in the conceptualisation and systematic exploration of a novel approach to source separation.

This approach distinctly diverges from conventional methodologies that primarily concentrate on

the improvement of quantifiable metrics, notably the SDR, and that are inherently limited by

the confines of the traditional 4-stem separation task. We believe that although there has been

considerable progress in the field, it has become apparent that we have reached a plateau in

performance, particularly when assessing the sonic quality of the separation. Frequently, artefacts

are introduced into the separated tracks, rendering the output unconvincing and inconsistent with

expectations of how a particular instrument -such as drums or bass- should sound.

We propose a novel approach that seeks to prioritise the consistency of the generated sound with

the expected timbre, and the dynamics and overall manner of sounding of the instrument, rather

than rigidly adhering to the ground truth. The proposed paradigm of separation and separation

enhancement focuses on improving the perceptual quality of the output audio, and in pursuit of

this goal chooses not to attach great significance to deviations from the target in terms of classical

evaluation metrics.

The choice of focusing on token-based audio generation - particularly with strict conditioning - for

the enhancement of complex musical sounds obtained from the separation of a song proved to be

an interesting and promising one. This paradigm is particularly interesting given that token-based

methods have only recently entered the realm of audio processing and generation.

Codec-based frameworks are gaining popularity and are becoming the cornerstone of cutting edge

generative applications. While there has been a surge of activity in this area, their application to

musically driven tasks such as separation or enhancement remains unexplored. In this context, our

exploration serves as a first step in delineating the scope and potential of codecs when tailored to

highly conditioned tasks.

Our proposal of training and fine-tuning models by aiming at a compressed and informative rep-

resentation of the signals aligns with SOTA proposals in the field of generative machine learning.

By focusing on the representations obtained from neural codecs, investigating how certain infor-

mation is encoded in them and exploiting their architectural flexibility, our work offers a valuable

contribution to future work in the area of token-based audio generation.
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9.2 Future Work

Looking ahead, there are many avenues to explore and challenges to overcome. One salient task

would be to focus on relevant metrics and audio evaluation. While classical metrics such as

SDR provide a satisfactory foundation, they do not cover the full range of perceptual features

in audio. Following the suggestions of Schaffer et al.[6], there is potential in integrating classical

MIR features such as spectral centroid, spectral flatness, contrasts and loudness, among others,

so as to enrich the quantitative evaluation possibilities. A comprehensive evaluation should also

integrate subjective evaluation methods in an attempt to bridge the gap between empirical metrics

and auditory perception.

While our research was ambitious in scope, a frank introspection reveals a relative scarcity of

rigorous evaluations. As our outputs often appeared to be qualitatively inferior to the prevail-

ing state-of-the-art frameworks, extensive evaluation was often dispensed with. However, as the

research moves forward, this will undoubtedly become crucial.

In addition, forthcoming efforts should examine the capability of these frameworks to generalise to

a wide range of instruments or sources. To this end, the use of resources such as the MoisesAI multi-

instrument source separation database[69] could be advantageous. The development of specialised

instrument codecs, together with an adequate framework to exploit them would be of great value,

not only to improve fidelity, but also to optimise efficiency, as the narrower range of possibilities

could allow for smaller codebooks. Conversely, the widening of the information bottleneck imposed

by the codec could improve audio quality, given that we are not interested in audio compression.

In closing, we believe that this research, with its novelties and challenges, serves as both an endpoint

and a starting point - a culmination of our efforts to date and a pointer to the many possibilities

that lie ahead.
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