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Abstract

English

This master’s thesis extends the work of Gonzalo Romero-Garcia [14], with a specific focus
on developing a framework for analyzing harmony in musical compositions. Understanding
harmony is a crucial part of understanding the complexities of music, and roman numeral
analysis is a widely used method among musicologists. This type of annotation gives information
about chord’s local tonality, root degree, quality, inversion, and any secondary tonalities (or
tonicizations). Romero-Garcia’s research tackles the task of automatic harmonic analysis, and
this work further refines his methodology, enhancing its robustness when applied to complex
musical pieces while preserving its high level of interpretability.

Keywords: Music, Harmonic analysis, Roman numeral analysis, Computational musicology,
Mathematical morphology, Graph theory

Français

Ce mémoire de master prolonge le travail de Gonzalo Romero-Garcia [14], en se concentrant
spécifiquement sur l’élaboration d’un cadre d’analyse de l’harmonie dans les compositions
musicales. Comprendre l’harmonie est essentiel pour saisir la complexité de la musique,
et l’analyse en chiffrage romain est un outil largement utilisé par les musicologues. Ce
type d’annotation fournit des informations sur la tonalité locale d’un accord, le degré de sa
fondamentale, sa qualité, son renversement, ainsi que sur les éventuelles tonalités secondaires
(ou tonicisations). Le travail de Romero-Garcia aborde la tâche de l’analyse harmonique
automatique, et ce travail améliore sa méthodologie en la rendant plus robuste lorsqu’elle est
appliquée à des œuvres musicales complexes, tout en préservant la grande interprétabilité de
cette méthode.

Mots clés: Musique, Analyse harmonique, Analyse en chiffrage romain, Musicologie
computationnelle, Morphologie mathématique, Théorie des graphes
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1 Introduction

Understanding harmony is fundamental in understanding the complexities of music, as it reveals
how tonal compositions create expectations, tensions, and resolutions. Despite centuries of
musicologists studying tonal harmony, only a fraction of musical pieces have undergone thorough
analysis. Therefore, automating harmonic analysis aims to unlock access to annotations for
every existing and future composition. By compiling a vast annotated dataset, the applications
of such analysis extend widely, such as serving educational purposes, correcting enharmonic
spelling errors during MIDI conversions, helping the composition of arrangements, or enhancing
music generation techniques.

For example, one could want to learn about the history of chord progressions or explore how
composers handled key changes. As these questions improve our understanding of harmonic
theory, music learners could benefit from the automation of harmonic analysis. Additionally,
in the realm of machine learning, where classification drives inference, the ability to automate
harmonic analysis becomes invaluable, especially for conditional music generation tasks.

There are various approaches to analyze the harmony within a musical piece. In jazz and
pop genres, chord symbols are the norm, denoting each chord by its root, quality and eventual
bass (e.g., EZmaj7/G). While practical for performers sight-reading, this method offers little
insight into the chord’s functional role with neighboring chords. Another technique, Riemannian
functional harmony, assigns each chord to a function relative to a key : tonic (T), dominant
(D), or subdominant (S), with a typical progression of S → D → T. While it facilitates
comprehension of chord relations, its lack of detail on individual chords often necessitates
supplementation with other notations. Roman numeral analysis, prevalent in classical music,
emerges as the most common method. Chord symbols can easily be derived from Roman numeral
analysis, and, as explained by Tymoczko [17], "[function] labels cannot be translated into Roman
numerals or absolute chord labels. However, function labels can often be recovered from Roman
numerals. [...] The asymmetry gives us reason to prefer Roman numerals for analytical corpora.".
Therefore, Roman numeral analysis serves as the harmonic analysis method for our approach.

In this method, each chord is annotated with five elements:

• Local Tonality: Indicates the primary key of the chord, annotated only when it changes
during modulation or at the beginning. For example, "Fm:" signifies that the local tonality
is F minor until the next modulation.

• Degree of the Root: Denoted by a Roman numeral ranging from I to VII, representing the
relation of the root note to the local tonality. If the root contains an accidental alteration,
it is indicated before the Roman numeral. For instance, "\vi" indicates a raised sixth
degree.
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• Quality of the Chord: Uppercase numerals represent major chords, while lowercase
numerals represent minor chords. Augmented chords are denoted by an uppercase numeral
followed by +, diminished chords by a lowercase numeral followed by °, and half-diminished
seventh chords by a lowercase numeral followed by ø.

• Inversion of the Chord: Specifies the bass note of the chord relative to the root. For
example, root position, first inversion, and second inversion of a triad are annotated as 5,
6, 6

4 respectively.

• Tonicization: Describes the relation of the chord’s root to a secondary key other than the
primary key, used when borrowing a chord from another key without a modulation. It
is indicated by a slash followed by the degree of the secondary key in Roman numerals.
For instance, "V/vi" signifies a chord borrowed from the vi of the primary key, where the
root is the V of the secondary key. For example, in this case, if the primary key is C
major, then the secondary key is A minor and the chord is E major (which contains G\,
not present in the key of C major).

With these elements, we understand the harmonic function of the chord while retaining
information about its constituent notes. For instance, a chord progression like EZ:V6/V-V7-
I provides the functional understanding of EZ:S-D-T. Meanwhile, it also informs us of the
individual chords: F Maj/A - BZ Maj - EZ Maj.
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2 State of the art

Automating Roman numeral analysis poses a significant challenge due to the contextual
dependency in chord notation. Each chord’s representation relies on both the local key and
its relationship to the root, resulting in numerous potential notations for a single chord, with
typically only one being plausible. In certain chord progressions, multiple interpretations may
arise, leading to divergent opinions among musicologists. Moreover, choosing the harmonic
rhythm (the rate at which chords change) is an essential and complex task. Filtering out passing
notes (notes that do not belong to the underlying chord) is also a necessary but sometimes
ambiguous task. As this section will show, early approaches often sidestepped the challenges of
rhythmic segmentation and key-finding by employing a simplistic, uniform harmonic rhythm or
focusing on non-modulating pieces. Previous research on harmonic automation predominantly
falls into two categories: rule-based, and machine learning techniques.

2.1 Rule based methods

Winograd’s 1968 research [18] marked the pioneering effort in automatic harmonic analysis, using
established natural language processing techniques to study Johann Sebastian Bach’s chorales.
However, his method involved a manual conversion of the score, providing a list of perfect four-
note chords, which means that human preprocessing was necessary for rhythmic segmentation
and non-harmonic note filtering.

In 1992, Maxwell [9] introduced another approach for analyzing Bach’s chorales, yet also
relying on manually-instructed rhythm segmentations. His algorithm operated on fifty-five
hand-made rules, demonstrating great accuracy for specific examples. However, because of
the arbitrary nature of the rules and their subjective associated weights, it struggled with
generalization, particularly when encountering arpeggiation, two-note chords, and ornaments.
Consequently, despite being pioneers, Winograd’s and Maxwell’s algorithms faced challenges in
addressing basic issues in harmonic analysis.

In his research in 1997, Temperley [15] proposed a method that aims to identify the key and
root of chords alongside the harmonic rhythm. This approach relies on the spatial representation
of Tonal Pitch Class (TPC), which distinguishes enharmonic notes with different spellings (such
as F\ and GZ), as opposed to the Neutral Pitch Class (NPC), which is more closely tied to
perceived frequencies (treating F\ and GZ as equivalent). In Temperley’s framework, pitches are
positioned at varying distances along the line of fifths (for example, C is closer to G than to D).
To find an analysis, Temperley employs five distinct rules:

1. The pitch variance rule determines the spelling of notes by selecting the Tonal Pitch Class
closer to the center of gravity of recent pitches along the line of fifths.
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2. The compatibility rule prioritizes the selection of a root by assigning a priority list based
on the pitch’s relationship to the root: 1 > 5 > 3 > Z3 > Z7 > other. This implies that
for a chord with notes G and B, the selected root is G instead of E because the pitch
relationship (1 3) takes precedence over (3 5).

3. The strong beat rule emphasizes segmentation on strong beats.

4. The harmonic variance rule favors roots that are closely positioned along the line of fifths.

5. The ornamental dissonance rule favors non-harmonic pitches when they are separated by
seconds.

This approach demonstrates improved generalization compared to prior methods, culminating
in the creation of the Melisma Music Analyzer program in 2001.

In 2007, Illescas [4] proposed a method that directly applies Riemann’s functional harmony
principles. The approach breaks down the task into small steps. First, it analyzes the
melody to identify non-harmonic notes, categorizing them into various passing tones based
on rules considering beat strength and intervals. Next, each measure is uniformly segmented.
Subsequently, chords are selected using intervals, and the key is determined by considering
accidental alterations. Then, possible tonal functions of the chord are established. Finally,
the best analysis is chosen from an acyclic directed graph, with edge weights determined by
hand-made rules.

Those examples of rule based methods highlight the intuitive nature of such algorithms
mirroring how musicians approach harmonic analysis. However, they often struggle to generalize
on large datasets.

2.2 Machine learning

The data-driven approaches to harmonic analysis usually fall into two type of methods: either
probabilistic models or deep learning models, with the latter being the study of most recent
researches.

2.2.1 Probabilistic models

In 2004, Raphael [13] introduced a Hidden Markov Model (HMM) to analyze harmony in music
pieces divided into uniform segments and encoded with Neutral Pitch Classes. He argued against
considering pitch spelling, asserting that listeners could interpret harmony solely based on the
frequencies played. The use of a Markov chain was justified musically, as each harmonic label
could depend only on the preceding one, expressed as p(xn+1|x1, ...xn) = p(xn+1|xn). Raphael
suggested that extending the model could involve retrieving voice leading information.
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Temperley [16] extended this suggestion by implementing it into his Bayesian probabilistic
model in 2009. His objective was to maximize the expression P (M, H, S|N), where M represents
the metrical structure, H stands for harmony, S denotes stream structure (melodic segregation),
and N refers to the analyzed note. This method initially focuses on stream structure, applying
logical rules to the streams while assuming a flat metrical structure and harmony. Then, it
simultaneously searches the optimal metrical structure and harmony. This process involves
considering various levels of beat grids to achieve the desired outcome.

2.2.2 Deep learning models

Kröger [6] introduced a machine learning framework in 2009 that tackles the chord labeling
task. The study conducts a comparative analysis, contrasting previously mentioned rule-
based algorithms with various fundamental architectures of decision trees and neural networks.
However, this framework falls short in addressing the challenges associated with rhythm
segmentation and key finding.

Building upon Kröger’s early work and the growing interest in machine learning for audio
tasks [10], Chen [1] introduced a deep learning architecture for Roman numeral analysis. This
architecture leverages the Long Short-Term Memory (LSTM) network’s ability to capture long-
term dependencies in sequential data, commonly utilized in natural language processing tasks.
Chen employs a Bidirectional LSTM (BLSTM) block, incorporating both forward and backward
LSTMs, enabling the model to consider both past and future chord contexts. The output includes
the five elements of Roman numeral analysis. However, the model disregards harmonic rhythm.
Chen’s work served as a catalyst, inspiring subsequent researchers to explore deep learning
techniques for addressing similar challenges in music analysis.

In 2020, Micchi [11] advanced Chen’s model by incorporating Gated Recurrent Units (GRUs)
instead of LSTMs and integrating convolutional layers to accommodate rhythmic metrics.
Expanding the training dataset to include compositions such as Mozart and Beethoven Themes
and Variations [2], Bach preludes [17], Beethoven string quartets [12], and various romantic
songs enhanced model robustness.

In 2021, Lopez introduced AugmentedNet [8], further enhancing Micchi’s architecture by
concatenating results from convolutional blocks, enabling simultaneous consideration of all
rhythmic metrics. Lopez also introduces additional tasks to the Roman numeral analysis,
increasing output redundancy to enhance the model’s understanding of the task. Notably, one
output classifies the 75 most common Roman numerals, and another output gives the harmonic
rhythm. The dataset is expanded to include Haydn’s String Quartets [7].

In 2023, Karystinaios [5] introduced a novel approach by encoding music scores as graphs,
with each note represented as a node and edges denoting temporal connections. Utilizing a
Graph Neural Network (GNN), the model generates of these graphs before passing the resulting
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arrays to a GRU for Roman numeral prediction, while incorporating additional tasks proposed
by Lopez. This innovative method offers a unique perspective on music representation and
analysis, potentially giving new insights into the underlying structure and relationships within
musical compositions.

2.3 A note on data-driven automatic harmonic analysis

The shift towards machine learning in harmonic analysis brings promising results. However,
while these techniques offer powerful tools for automatic analysis, musicologists caution against
overlooking inherent ambiguities in harmonic progressions. Unlike in some other fields where
ground truth is more clearly defined, harmonic analysis lacks a unique, definitive solution.

The few existing datasets often provide only one or two analysis of a piece, disregarding
potential ambiguities. Relying only on these interpretations for algorithm training risks
oversimplifying the complexity of musical harmony.

For instance, when faced with conflicting annotations of the same progression, algorithms
may struggle to generalize effectively, leading to oscillations between different results without
achieving true understanding.

Another significant drawback of deep learning techniques in harmonic analysis is the lack
of interpretability of intermediate results. Unlike traditional musicological approaches, where
analysts can articulate and justify their interpretations based on theoretical principles and
context, deep learning algorithms operate as black boxes, making it challenging to understand
how they come to their conclusions. This lack of transparency undermines the essence of
analyzing complex tonal pieces, as the algorithm’s decisions cannot be interpreted and critiqued
in a meaningful way.

Overcoming these limitations requires developing methods to extract and visualize the
reasoning behind the algorithm’s choices, enabling a more transparent and interpretable
approach to automatic harmonic analysis.
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3 The tonal graph

The tonal graph, developed by Gonzalo Romero-Garcia, is a novel and effective approach to
harmonic analysis that also provides high interpretability.

3.1 Presentation of the tonal graph

A tonal graph (V, E) is a chain of bipartite graph where the vertices V represent possible Roman
numerals of one piece of music, and the edges E connect nodes that are temporally successive.
Its goal is to find the most plausible roman analysis of the piece by building a path (V1, V2, ..., Vn)
(see Figure 3.1).

Figure 3.1: Example of a tonal graph for the first measure of the chorale Ach wie flüchtig, ach
wie nichtig by Johann Sebastian Bach

3.1.1 Construction of the tonal graph

This graph is built upon a representation of the musical score in the form of a piano roll, which is
a 2D binary array P of size 128×D where the first axis represents the MIDI height of the notes
and the other axis represents the time. This piano roll is condensed into a collapsed chroma roll
S of size 12× T where T = D

τ and τ is a temporal collapse factor chosen so that the temporal
resolution of the chroma roll is the selected uniform harmonic rhythm of the piece (see Figure
3.2).
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∀f ∈ [[0, 11]], ∀t0 ∈ [[0, T ]],

S[f, t0] =

1 if ∃m ∈ N,∃t ∈ [[t0τ, (t0 + 1)τ ][, P [f + 12m, t] = 1

0 otherwise
(3.1)

Figure 3.2: The piano roll and the chroma roll of the first measures of the Sonata no. 5 in G
major by Wolfgang Amadeus Mozart

Possible Roman numerals are derived from this chroma roll with a morphological binary
erosion. This operation acts as a detector of the presence a structuring element.

In our context, a structuring element R ∈ {0, 1}12 is constructed from a Roman numeral. For
instance, the Roman numeral V, which is the major chord built upon the dominant of the key
and which contains the notes that are 2, 7 and 11 semi-tones above the tonic, is associated with
the structuring element RV = [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1].

Thus, if S is the input and R is the structuring element, the erosion of S by R denoted by
S ⊖R and belonging to the space {0, 1}12×T is defined by

(S ⊖R)[f, t] =

1 if R + f ≤ St

0 otherwise
(3.2)

where (R + f)[j] = R[j + f mod 12] is the circular shift of R by f and St is the t-th column of
S.

An activation array A of size I × 12 × T is constructed by stacking the results of binary
erosion with the structuring elements R1, R2, · · · , RI which represent I manually selected and
translated Roman numerals shown in table 3.1.

The array is defined as:
A[i, f, t] = (S ⊖Ri)[f, t] (3.3)
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RN Repr. Mode RN Repr. Mode
I (0, 4, 7) M v (7, 10, 2) m
i (0, 3, 7) m vi (9, 0, 4) M
ii (2, 5, 9) M viº (9, 0, 3) m
iio (2, 5, 8) m VI (8, 0, 3) m
iii (4, 7, 11) M viiº (11, 2, 5) M, m
III (3, 7, 10) m VII (10, 2, 5) m
III+ (3, 7, 11) m N (1, 5, 8) m
IV (5, 9, 0) M Fr (8, 0, 2, 6) m
iv (5, 8, 0) m Ger (8, 0, 3, 6) m
V (7, 11, 2) M, m It (8, 0, 6) m

Table 3.1: List of Roman numerals, their integer representation and the mode(s) with which
they are associated.

The nodes of the tonal graph correspond to the indexes (i, f, t) where A is nonzero. Here,
f ∈ [[0, 11]] indicates the pitch class of the tonic of the key (0 = C, 1 = C\, · · · , 11 = B). The
index i is the index in the list of Roman numeral candidates. The variable t represents time in
the uniform grid. In the graph, a node is denoted as f : Li, where Li is the label of the Roman
numeral, specifying its figure and quality.

For instance, if a score contains a C major chord at time t0, the candidates could include C:
I, as well as G: IV and F: V. The tonal graph would then include the nodes (I, 0, t0), (IV, 7, t0),
and (V, 5, t0).

To create the edges of the graph, a chain of bipartite graphs is constructed by linking all
nodes with a time component of t to all nodes with a time component of t + 1. The weight of
the edges indicates the presence of tonality modulation:

e(i1,f1,t),(i2,f2,t+1) =

0 if f1 = f2

1 otherwise
(3.4)

With this method of calculating edge weights, finding a shortest path in the graph corresponds
to identifying an analysis with the minimal amount of modulation. The shortest path algorithm
can be written in linear complexity as the tonal graph is constructed as a Directed Acyclic
Graph.

3.2 Limitations of the tonal graph

Despite its advantages, using the tonal graph has several shortcomings that need to be addressed.
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3.2.1 Enharmonic ambiguities

Describing pitch only by its chromatic information instead of its standard notation is a loss of
information, and can sometimes lead to ambiguity. Musicians analyze enharmonically equivalent
pitches differently when they are notated distinctly. The most notable example is the fully
diminished seventh chord.

For example, when built upon a C, the pitch classes are (0, 3, 6, 9). However, this chord can
be notated in numerous different ways: (C, EZ, GZ, B[), (C, EZ, GZ, A^), (C, EZ, F\, A), and (C,
D\, F\, A), and each way has its own specific analysis (the chords are respectively in the key of
DZ minor, BZ minor, G minor and E minor)

3.2.2 Piano Roll temporal inefficiency

The size of the piano roll P , representing the entire musical piece, is 128×D, where D depends
on the piece’s duration and the time resolution. This temporal representation can often be
highly inefficient. To accurately represent all possible rhythms, the time resolution must be a
common divisor of all note lengths. This requirement results in a large array and consequently
long computation times (see Figure 3.3).

Figure 3.3: Because of the presence of thirty-second notes and tuplets in the 8th measure of
Wenn der Abendstern die Rosen composed by Emilie Mayer, every measure of the
piece must be divided into ninety-sixth notes.

3.2.3 Chords with missing notes

Due to the nature of morphological erosion, this method cannot detect chords with missing
notes. For example, if the chord at time t0 consists (C, E), the Roman numeral I does not
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activate because St0 = [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] and R = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]. No f

exists such that Rf ≤ St0 .

3.2.4 Non harmonic tones

Musical pieces are not composed of only harmonic notes. When notes outside the intended chord
are present, this can lead to the activation of too many unwanted interpretations (see Figure
3.4).

An example would be a melody that rapidly runs through the entire C major scale, which
would trigger the activation of all the Roman numerals associated with the C major tonality.

Figure 3.4: The presence of an E in this G major chord adds an unwanted E minor analysis

3.2.5 Harmonic Rhythm

A glaring issue of this method is the lack of automatic harmonic rhythm recognition. This means
that a uniform harmonic rhythm is assumed, and shall be individually decided for each piece to
analyze.

In the example illustrated by figure 3.5, the first measure necessitates an analysis in eighth
notes. However, the second measure requires an analysis in whole notes. Attempting to analyze
the first eighth note of the second measure (C B C) would not yield the correct analysis.

Figure 3.5: Excerpt from 32 Variations on an Original Theme in C minor by Ludwig van
Beethoven
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3.2.6 Complex modulations

Choosing the correct analysis by selecting the path with minimum amount of modulation is
satisfactory with harmonically simple pieces. Nevertheless, this method requires a more robust
comprehension of harmony as it is prone to errors when analyzing some pieces.

Typically, when the modulations are short, there is not enough information about the local
tonalities to correctly select when they modulate, and where they modulate to.

In the example illustrated in figure 3.6, an incorrect analysis consisting of (f\: III → C: ii → I
→ IV → G\: VI → C: vi → V → I) could possibly be selected as it has 4 modulations, which is
the minimum possible. Here, choosing to modulate to F\ minor and G\ major is absurd because
the tonalities are harmonically too distant to C major. Because of the lack of information on
music theory principles, such analysis fails to grasp the V → I sequence of this excerpt.

Figure 3.6: A classic modulating sequence with an example of analysis
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4 Contributions

The primary objective of this internship was to rectify the limitations of the current methodology.
The harmony analysis process has been restructured into three distinct subtasks: chord root
detection, rhythm segmentation, and tonal analysis. This approach not only reduces the burden
on the shortest path method but also incorporates music theory rules, all while preserving a
high level of interpretability (see Figure 4.1).

Figure 4.1: Algorithm structure for 4 measures of Ständchen by Franz Schubert

4.1 New symbolic representations of the musical score

To accomplish an effective harmonic analysis, a symbolic representation of music was employed
to tackle the issues explained in the previous section.
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4.1.1 The pitch space

The diatonic/chromatic space Z7×Z12 can be used to represent note height in order to address
the issue of enharmonic ambiguity. By combining the chromatic space with the diatonic space,
pitches, as well as intervals, are treated in the same way as in music theory: the pitch / interval
name encodes the diatonic space, while the number of semitones encodes the chromatic space
(see Tables 4.1 and 4.2).

For example, F\ is encoded by (3, 6), GZ is encoded by (4, 6), an augmented sixth is encoded
by (5, 10) and a minor seventh is encoded by (6, 10). This allows the distinction between a
German chord in C minor (AZ, C, EZ, F\) and a dominant seventh chord in DZmajor (AZ, C, EZ,
GZ).

0 1 2 3 4 5 6 7 8 9 10 11
6 B\ B] B[ BZ B
5 A[ AZ A A\ A]
4 G[ GZ G G\ G]
3 F[ FZ F F\ F]
2 E[ EZ E E\ E]
1 D[ DZ D D\ D]
0 C C\ C] C[ CZ

Table 4.1: The diatonic / chromatic space for notes with 2 or less alterations

0 1 2 3 4 5 6 7 8 9 10 11
6 A7 d7 m7 M7
5 d6 m6 M6 A6
4 d5 P5 A5
3 d4 P4 A4
2 d3 m3 M3 A3
1 d2 m2 M2 A2
0 P1 A1 d1

Table 4.2: The diatonic / chromatic space for intervals

4.1.2 The Note Graph

An interesting representation of the musical score is the graph proposed by Karystinaios [5],
which will be referred to as the note graph N = (V, E).

The vertices represent the notes, with all the various types of associated information such as
the pitch, the time of onset, the duration, the dynamics, the articulation, the part assignments,
the lyrics, and more.
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The temporal relationship between notes are described more directly as the directed edge eu,v

connects nodes u and v if they meet the following conditions:

• Onset edge : u and v start at the same time and u is lower-pitched than v

• During edge: v starts while u is sounding

• Follow edge: v starts when u ends

• Silence edge: v starts after u ends and no notes are in-between

Figure 4.2: Note graph for the first measures of Sonata N°17, 3rd Mvt., Ludwig van Beethoven

This graph is a Directed Acyclic Graph, which results to algorithms with low time complexities.

4.2 Chord root detection with similarity levels

Due to the shortcomings of the morphological erosion discussed in section 3.2.3, a different
algorithm for chord detection is proposed.

Let W be a time window for the analysis. A subgraph of the note graph NW = (VW , EW ) is
created so that it corresponds to the notes played during the time window W . Every existing
chord is given a score SW ∈ [0, 1] that indicates the similarity level between the subgraph and
the chord.

A chord is indexed by (d, c, iquality) where d ∈ [[0, 6]] is the diatonic class and c ∈ [[0, 11]] is
chromatic class of the root of the chord, and iquality ∈ [[0, 11]] is the index of the chord quality
in a manually specified family of eleven chord qualities Q0, Q1, · · · , Q11 (specified in Table 4.3).
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Index Name Symbol Root Third Fifth Seventh
0 Major triad M (0,0) (2,4) (4,7)
1 Minor triad m (0,0) (2,3) (4,7)
2 Diminished triad o (0,0) (2,3) (4,6)
3 Augmented triad + (0,0) (2,4) (4,8)
4 Major seventh maj7 (0,0) (2,4) (4,7) (6,11)
5 Minor seventh m7 (0,0) (2,3) (4,7) (6,10)
6 Dominant seventh 7 (0,0) (2,4) (4,7) (6,10)
7 Diminished seventh o7 (0,0) (2,3) (4,6) (6, 9)
8 Half-diminished seventh ø7 (0,0) (2,3) (4,6) (6,10)
9 Italian augmented sixth 1 It (0,0) (2,2) (4,6)
10 French augmented sixth Fr (0,0) (2,4) (4,6) (6,10)
11 German augmented sixth Ger (0,0) (2,2) (4,6) (6,9)

Table 4.3: Intervals of the selected qualities in the diatonic/chromatic space

Let C(d, c, iquality) ⊆ Z7 × Z12 be the set of notes of the chord indexed by (d, c, iquality).
For example, C(2, 3, 1) would correspond to the chord D\minor. Thus, C(2, 3, 1) =
{(2, 3), (4, 6), (6, 10)}

An interesting similarity chord score that handles missing notes and unharmonic notes would
be the Intersection over Union (IoU) measure, or formally:

SIoU
W (d, c, iquality) = |C(d, c, iquality) ∩ V pitches

W |
|C(d, c, iquality) ∪ V pitches

W |
(4.1)

where V pitches
W is the set of pitches of the played notes during the analyzed time window W .

We can rewrite:

|C(d, c, iquality) ∩ V pitches
W | =

∑
p∈C(d,c,iquality)

1(p ∈ V pitches
W ) (4.2)

By replacing 1(p ∈ V pitches
W ) with a weight wW (p) ∈ [0, 1] that measures the harmonic

importance of the played pitches, we can inject information about music theory. We use
the following established principles observed in classical music, which are confirmed in the
experiment section 5.1.1:

• Notes that are doubled tend to be more likely harmonic.

• High-pitched notes are generally more likely to be inharmonic.

• Shorter notes are more likely to be inharmonic.

1Augmented sixth chords usually do not have a root. For the sake of the example, the root was chosen so that
the chord is constructed by a third, a fifth, and an eventual seventh above the root
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Thus, for each pitch p, the weight wW (p) can be divided into three weights:

• wdoubling(doub(VW , p)) that depends on the number of times the pitch p is played. This
number is defined as:

doub(VW , p) = |{u ∈ VW |upitch = p}|

This weight function wdoubling ∈ [0, 1]N must be increasing to ensure that the more times
a pitch is played, the more it has harmonic relevance. The function must also ensure that
wdoubling(0) = 0, so that the two other weights do not need to be computed if p is not
played.

• woctave(oct(VW , p)) that depends on the octave of the lowest played note that has the same
pitch as p. This octave number is defined as:

oct(VW , p) = min({uoctave|u ∈ VW ∧ upitch = p})

This weight function woctave ∈ [0, 1]N must be decreasing to ensure that lower pitches have
higher harmonic importance.

• wduration(dur(VW , p)) that depends on the relative duration of the longest played note that
has the same pitch as p. This relative duration is defined as:

dur(VW , p) = max({uduration/Wduration|u ∈ VW ∧ upitch = p})

This weight function wduration ∈ [0, 1][0,1] must be increasing to ensure that longer pitches
have higher harmonic importance.

Empirically satisfying functions that were used are:

wdoubling(n) = min(1,

√
n

3 )

woctave(n) = 1
1 + en−6

wduration(x) =
√

x

The complete formula for SW can be written:

SW (d, c, iquality) =

∑
p∈C(d,c,iquality)

wdoubling(doub(VW , p)) · woctave(oct(VW , p)) · wduration(dur(VW , p))

|C(d, c, iquality) ∪ V pitches
W |

(4.3)
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Additionally, we have found that more principles of classical music can easily be implemented
to create a more robust algorithm 2:

1. Leap rule: Non-harmonic notes are either approached or left by intervals smaller than
a third. This can be restated as: any note approached and left by intervals equal to or
larger than a third must be harmonic.

2. Onset rule: If three or more different pitches are played at the same time and they are
pitches of a chord, and if the analysis window is shorter than the played notes, then the
underlying chord is likely to be this chord for the analysis window.

The first principle is implemented by examining the edges E of the note graph N = (V, E)
and labeling as leap vertices all vertices u ∈ V which all incoming and outgoing edges have an
interval greater or equal to a third. Given time window W , for each leap vertex uleap ∈ VW , the
score SW is modified so that chords that do not contain the pitch of uleap give a zero score.

For example, in the excerpt of Mozart’s Piano Sonata N°1 illustrated in Figure 4.3, the circled
E is a leap note because it is both approached and left by thirds. Therefore, time windows W1

and W3 must have their score SW updated so that all chords that do not include the note E
have a score of zero.

Figure 4.3: In this measure of Piano Sonata N°1 by Wolfgang Amadeus Mozart, the circled E
is a leap note.

It can be noted that all notes of the left hand are considered as leap notes, and thus, time
window W3 should have zero scores for all chords that do not include C, D, E, G and B. Since,
no chord includes all these notes, SW3 = 0, making any analysis on time window W3 inadequate.
In this example, the implementation of this principle also helps with the harmonic rhythm
segmentation since W3 cannot be a selected analysis time window.

The second principle is implemented by examining the onset and during edges of the note
graph N and thus examining all notes that are played at the same time. If these notes are

2While these rules are not absolute and further refinement is needed to address exceptions, their empirical
application is generally advantageous
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composed of three different pitches or more, we check the list of all the chords that contain
all the pitches of the played notes. If this list is empty, we do not update SW . Otherwise, we
update SW so that only these chords have a non-zero score. This is done only if the analysis
time window W is included in the time window of the played notes.

For example, if a C, an E, and a G are played at the same time during the whole time window
W , the underlying chord could only be CM, Cmaj7, C7, Am7 or A\Ger. Thus, every SW would
be zero for other chords.

Therefore, thanks to this framework that implements various principles of music, the algorithm
can easily be updated based on the needs and the context of the music genre.

4.3 Harmonic rhythm segmentation with the Rhythm Tree

The challenge of selecting the appropriate harmonic rhythm segmentation is equivalent to
determining the correct time windows W for analysis. To address this, a method based on
the rhythm tree is proposed.

The rhythm tree of a musical score is a tree that maps possible harmonic rhythm segmentations
of the score. Each node of the tree is associated with a time window that starts at time tstart

and ends at time tend and its children are the time windows derived from analyzing the piece at
a lower rhythm subdivision as illustrated in Figure 4.4.

Figure 4.4: The rhythm tree for the first two measures of the Sonata for Arpeggione and Piano
by Franz Schubert. Nodes at depth 1 represent segmentations on whole-notes, nodes
at depth 2 on half-notes, depth 3 on quarter-notes and depth 4 on eighth-notes.

Formally, let W be the time window that represents the note subgraph NW = (VW , EW ) at
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time [tstart, tend[ and that subdivides the score at rhythm Ri. We define

T = {t ∈ [tstart, tend[|∃u ∈ VW , t = ustart ∧ (t− tstart) = 0 mod Ri+1} (4.4)

where Ri+1 is the rhythm that subdivides Ri (half-notes subdivide whole-notes, quarter-notes
subdivide half-notes, etc.).

Given the set T = {t1, ..., tn−1, tn}, the children of a node corresponding to the time window
W are constructed as nodes corresponding to time windows Wi that begin at time ti and end
at time ti+1, where i ranges from 1 to n− 1.

As discussed in section 4.2, each time window W is analyzed, and for each chord
C(d, c, iquality), a score SW is assigned. The challenge lies in selecting which nodes of the rhythm
tree should be retained for further analysis.

For any node n associated with time window W that has children {n1, n2, ..., ni}, we define:

best(n) = max
d,c,iquality

(SW (d, c, iquality)) (4.5)

s(n) =

best(n) if n has no child

max(mean(s(n1), · · · , s(ni)), mean(best(n1), · · · , best(n1))) otherwise
(4.6)

Algorithme 1 : Algorithm for the Rhythm Tree Node Selection
Function NodeSelection(n):

if best(n) ≥ s(n) then
nselected ←− True;

else
nselected ←− False;
foreach ni ∈children of n do

NodeSelection(ni)
end

end
End Function

The intuition behind this method is to recursively select nodes that have a higher score than
a mean score of their respective children. We have empirically found that the geometric mean
function produces satisfying harmonic segmentation.

We now have a set of selected nodes {n̂1, n̂2, · · · , n̂N}, which corresponding time windows
{Ŵ1, Ŵ2, · · · , ŴN} cover the entire musical piece. Each of these nodes has an associated score
SŴi

(d, c, iquality) for each chord C(d, c, iquality).
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4.4 Incorporation of the Tonal Graph

For each selected time window Ŵi, multiple nodes of the tonal graph need to be constructed.
This involves considering every chord C(d, c, iquality) that has a nonzero score SŴi

(d, c, iquality).
However, to optimize computational efficiency, we can focus on only the chords with the highest
scores without significantly compromising accuracy. For the experiments, the chords with the
top five scores were used.

For each chord C(d, c, iquality) that is considered, all the Roman numerals that describe this
chord are translated into nodes of the tonal graph. Each node u is assigned a weight wu =
1−SŴi

(d, c, iquality). Edges are created to connect all the nodes of time window Ŵi to the nodes
of time window Ŵi+1.

As explained in Section 3.2.6, the edge weights in the tonal graph need to be selected to reflect
principles of music theory. A proposed formula for calculating the edge weight wu,v connecting
nodes u and v considers the following parameters:

• Distance between keys: The distance D(ukey, vkey) measures the distance between the
key associated with node u and the key associated with node v.

• Chord similarity levels: The node score wu represent how well the notes of the musical
piece align with the chord for node u.

• Rarity of Roman numerals: The coefficient frn(u) depends on the rarity of the Roman
numerals, with more common numerals like I typically having a lower value compared to
less common ones like III.

• Rarity of Roman numeral transitions:3 The coefficient ftransition depends on the
rarity of transitions between two Roman numerals. For instance, the V → I transition is
common in classical music and would therefore have a lower value.

Formally, we define:

wu,v = ftransition(u, v) · (ckeyD(ukey, vkey) + cchord
wu · frn(u) + wv · frn(v)

2 ) (4.7)

where ckey and cchord are positive real coefficients that indicate the relative importance of their
respective parameters in the formula. ftransition, frn and D are functions that are detailed in
the folowing sections.

3Musicologists consider that first-order transitions are insufficient to fully describe the complexities of music. To
achieve a more accurate representation, it may be necessary to incorporate structural information, which may
involve analyzing longer sequences of chords and considering hierarchical relationships.
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4.4.1 Distance between two keys

To compute the distance D between two keys, a graph of keys is proposed to accurately represent
the geometric space of musical keys. We define a non-oriented, weighted graph K = (V, E) where:

• Vertices: Each element of Z7 × Z12 × {major, minor} is associated with a vertex u and
is therefore noted as (du, cu, mu). Here:

– du ∈ Z7 denotes the diatonic class of the tonic of the key

– cu ∈ Z12 denotes the chromatic class of the tonic of the key

– mu indicates the mode of the key, either "major" or "minor".

• Edges: The edges in the set E reflect relationships between keys based on common
modulation types. An edge eu,v is created according to the conditions in Table 4.4. The
edge weights can be empirically chosen based on the edge types.

Edge type Diatonic int. Chromatic int. Mode of u Mode of v

Neighbor keys dv − du = 4 cv − cu = 7 mu = mv

Relative keys dv − du = 2 cv − cu = 3 mu = minor mv = major
Parallel keys dv = du cv = cu mu ̸= mv

Enharmonic equivalent dv − du = 1 cv = cu mu = mv

Minor dominant key dv − du = 4 cv − cu = 7 mu = minor mv = major

Table 4.4: Conditions for the construction of edges of the graph of keys

For example, the node associated with the key of C major would have the following
neighbors: G major, F major, A minor, C minor, D[ major, B\major, F minor.

Therefore, we define the key distance D(key1, key2) as the length of the shortest path in this
graph of keys between the node u that represents key1 and the node v that represents key2. An
interactive dashboard was developed to help visualize the graph and the influence of the weights.

In the example illustrated by Figure 4.5, the edge weights that were used are 4: wneighbor = 1,
wrelative = 0.7, wparallel = 1.3, wenharmonic = 0.01, wdominant = 1.2. Selecting the key of E
major and GZminor results in 6 different shortest paths of length 1.71. The one shown in the
illustration is composed of the following modulations: E major → C\minor (relative minor) →
DZminor (enharmonic) → GZminor (neighbor).

The distance D is invariant by translation, or formally:

∀(d, c) ∈ Z7×Z12, D((d1, c1, m1), (d2, c2, m2)) = D((d1+d, c1+c, m1), (d2+d, c2+c, m2))) (4.8)

4These weights are also used for the experiments.
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Figure 4.5: One of the shortest path between the key of E major and GZminor. For the sake of
visibility, keys that have more than 2 alterations in their name are represented by
circles.

Therefore,
D((d1, c1, m1), (d2, c2, m2)) = D̂((d2− d1, c2− c1, m1, m2)) (4.9)

where D̂((d, c, m1, m2)) = D((0, 0, m1), (d, c, m2)) is a distance that can be pre-computed and
stored in a 7× 12× 2× 2 array (size 336). This substitution prevents the storage of an array of
shape 7× 12× 2× 7× 12× 2 (size 28224).

4.4.2 Transition weight and Roman numeral weight

Determining the correct ftransition and frn can be approached using data-driven methods.
This involves analyzing pieces from the dataset with initially set parameters (either random
or manually chosen) and then adjusting ftransition and frn based on a learning rate to minimize
discrepancies between the analysis and the dataset (see results in Figure 4.6).

Figure 4.6: ftransition after training on a dataset of Bach’s chorales. As expected, the weights
are low for transitions V → V and V → I

This method was applied to a dataset of Bach’s chorales with some success, achieving an
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Mode Roman numeral frn Mode Roman numeral frn

Major I 1 Minor i 1
Major Imaj7 0.5 Minor i7 0.8
Major ii 0.99 Minor N 0.95
Major ii7 0.99 Minor iio 0.99
Major iii 0.8 Minor iiø7 0.99
Major iii7 0.5 Minor III+ 0.9
Major iv 0.9 Minor III 0.6
Major IV 0.99 Minor IIImaj7 0.4
Major IVmaj7 0.8 Minor iv 0.99
Major V 0.99 Minor iv7 0.8
Major V7 0.99 Minor V 0.99
Major vi 0.99 Minor V7 0.99
Major vi7 0.8 Minor v 0.8
Major viio 0.99 Minor VI 0.99
Major viiø7 0.99 Minor VImaj7 0.6
Minor It 0.9 Minor viio 0.99
Minor Ger 0.9 Minor viio7 0.99
Minor Fr 0.9 Minor VII 0.8

Table 4.5: Suggested values for frn

Chord 1 Chord 2 ftransition

V7 I 0.9
V I 0.94
V7 i 0.9
V i 0.94

viiø7 I 0.95
viio I 0.94
viio7 i 0.95
viio i 0.94

other other 1

Table 4.6: Suggested values for ftransition

accuracy of 78.64%. However, due to difficulties in generalizing to a broader dataset, as well as
the challenges discussed in sections 2.3 and 5, we have found that manually selected coefficients
based on music theory knowledge are preferable. A suggestion of these values are presented in
tables 4.5 and 4.6. These values can be adjusted according to the needs and music genres.

With this revised definition of the edge weights of eu,v, the correct analysis is still obtained
by applying a shortest path algorithm to the tonal graph.
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5 Experiments

The Challenge of Evaluating Harmonic Analyses

Harmonic analysis presents inherent challenges in evaluation due to the abundance of
ambiguities. Multiple valid analyses can arise from the same musical piece, depending on the
hierarchical perspective adopted during the analysis. This variability highlights the complexity
of assessing harmonic interpretations and the influence of different analytical frameworks.

For example, in the excerpt in BZmajor illustrated in figure 5.1, one approach to analyzing the
first measure might involve interpreting it as a modulation to G minor with a Roman numeral
every eighth-note (g: i6 V43 i V6). Alternatively, another perspective could be to view the
passage as a two-measure sequence that supports a five-measure cycle of fifths (D - g - C - F
- BZ). This approach would maintain the key of BZmajor and assign one Roman numeral per
measure (BZ: V6/vi vi V6/V V I).

Figure 5.1: Excerpt from "Das Wandern", Die schöne Müllerin by Franz Schubert with the two
valid analyses.

The first analysis represents a more localized approach, where the focus is on immediate
harmonic relationships within a smaller segment of the music. In contrast, the second analysis
provides a more global perspective, interpreting the passage in terms of broader harmonic cycles.
Choosing one type of analysis over the other (which could be labeled as a "ground truth" in a
dataset) should not be equated with an error in the same way as a clearly incorrect analysis.

Another common example of harmonic ambiguity arises in cases involving very long
modulations. In such scenarios, the analysis can diverge significantly based on where one chooses
to identify the points of modulation.

This issue is a common critique of using Roman numerals as a harmonic analysis tool, as
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it highlights the lack of a universally agreed-upon approach for resolving such ambiguities.
The choice between local and global perspectives, and the inherent flexibility in interpretation,
reflects the complexity and subjectivity involved in harmonic analysis. There is no clear-
cut solution to this problem, as the effectiveness of Roman numerals in capturing harmonic
relationships often depends on the specific context and analytical goals.

Nevertheless, the advantage of our proposed framework lies in its flexibility, which is achieved
through a comprehensive set of interpretable and customizable rules. This allows a user to
not only operate the framework but also to finely adjust its parameters and approach. By
tweaking these rules, the user could tailor the framework to better suit specific analytical needs
or preferences, enabling a more precise and personalized analysis of musical pieces.

5.1 The When-in-Rome Corpus

For the experiments, a subset of the When-in-Rome dataset [3] was used.

5.1.1 Presentation of the dataset

The dataset consists of around 2 000 harmonic analyses of around 1 500 distinct works, spanning
from Baroque to contemporary classical music. Due to the stylistic diversity, we have chosen
to focus exclusively on pieces composed during the Classical era (see Figure 5.2). Each piece is
categorized by genre (Orchestral, Quartets, Piano Sonatas, etc.), and includes information on the
composer, the piece’s title, and its movements. The analyses are provided in the RomanText
format [17], while the musical scores are available in .xml, .mxl, .krn, or .mscz formats. For
implementation purposes, only pieces available in .xml or .mxl formats were selected for the
experiments.

To support the validity of equation 4.2, a verification was performed to assess the claim that
harmonic notes are generally lower-pitched and shorter in duration. The figures 5.3 and 5.4
appear to confirm these assertions.

5.1.2 Limitations of the dataset

In addition to the issues discussed in section 5, which are common to all harmonic analysis
datasets, there are instances where the analyses given in the When-in-Rome dataset deviate
from standard practices. For instance, in the theme exposition of Beethoven’s 9 Variations on
a March by Dressler (see Figure 5.5) which begins in C minor, the When-in-Rome dataset’s
analysis does not follow the expected modulation to EZmajor in the fourth measure. Instead, it
employs a prolonged tonicization of III.
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Figure 5.2: Distribution of composers and genre of the selected pieces in the When-in-Rome
dataset

Figure 5.3: Left: The proportion of non-harmonic notes relative to note duration, with darker
points indicating more frequent rhythms. Right: The proportion of non-harmonic
notes relative to pitch height, with darker points representing more frequent pitches.

Moreover, some analyses do not align with their associated score, notably due to incomplete
measures, which is a common occurrence in repeat bars with anacruses.
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Figure 5.4: Points are positioned according to their pitch and duration. The size of each point
indicates the frequency of occurrence. The color represents the proportion of non-
harmonic notes: red indicates a high proportion of non-harmonic notes, and blue
indicates a high proportion of harmonic notes.

Figure 5.5: First measures of 9 Variations on a March by Dressler by Ludwig van Beethoven.
For the second half, the analysis given by the When-in-Rome dataset is above a
standard analysis.

5.2 Comparison of algorithms on the Dataset

To address these limitations, effort was invested in selecting a subset of pieces and manually
verifying and curating their analyses. The "curated" dataset, used for algorithm comparison,
includes 34 pieces: 11 themes and variations by Ludwig van Beethoven, 3 piano pieces by Frédéric
Chopin, and 20 lieder by Fanny Mendelssohn.
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Table 5.1: Algorithm comparison between AugmentedNet (AugNet) and our algorithm
(TonGraph)

Composer Key accuracy Degree accuracy Degree and quality accuracy
AugNet TonGraph AugNet TonGraph AugNet TonGraph

Beethoven 89.5 74.7 73.9 57.1 69.0 52.4
Chopin 81.9 61.6 64.6 52.1 58.6 47.0
Mendelssohn 84.6 69.5 69.8 57.7 63.5 52.9
Average 85.9 70.5 70.7 57.0 64.9 52.2

Our algorithm that we name TonalGraph can be found at https://github.com/Sebastien-li/
Tonal-Graph. Its output is compared to the output of the state of the art algorithm
AugmentedNet [8] by computing the relative duration of Roman numerals that are identical to
the provided ground truth. More specifically, we verify the accuracy of the Roman numerals’s
key, its degree and its degree with quality. For example, a Roman numeral E: V has the same
key and degree as E: V7, but differs in quality. This distinction means that the error can be
categorized differently from a straightforward mistake. The accuracies are shown in table 5.1.

It appears that our algorithm is underperforming compared to AugmentedNet, with
discrepancies of around fifteen percentage points in accuracy. It is worth noting that both
AugmentedNet and our algorithm struggle more with pieces that have highly ambiguous
harmony. The piece with the worst accuracies is Chopin’s Revolutionary Étude (Op. 10, No.
12), which features complex harmony and a large number of non-harmonic notes, with a degree
accuracy of 59.2% for AugmentedNet and 33.8% for our algorithm.

An interactive dashboard was also developed to compare and evaluate the strengths and
limitations of both algorithms using toy examples. Let us consider an excerpt from Mozart’s
Sonata No. 16 (Figure 5.6) where both algorithms showed poor accuracy.

Measure 10 is globally a C:IV chord with a passing V65/V chord at the last eighth-note.
Measure 11 could be analyzed as either in C major or G major, as it is a transition between the
two keys. The ground truth analysis does not modulate yet, while AugmentedNet suggests a
modulation to G major at the third beat of measure 11. Both analysis are justifiable. However,
TonalGraph proposes a modulation to G major at the third beat of measure 10, which is be
slighly premature; the earliest justifiable point for modulation would be the last eighth-note of
measure 10.

AugmentedNet tends to adopt a more global perspective, treating the F\ as a passing chord
and not assigning a Roman numeral, whereas the ground truth analysis specifies the IV6 and
the passing V65/V. This global approach results in an analysis of measure 11 that overlooks
the C: I64 chords, which may be harder to justify (but not entirely unjustifiable). Conversely,
TonalGraph appears to take a more local approach, attempting to assign a Roman numeral
to each quarter note, and failing due to the abundance of non-harmonic notes. Nevertheless,
TonalGraph’s analysis of measure 11 is closer to the ground truth.
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Figure 5.6: Measure 10 and 11 of Sonata No. 16 by Wolfgang Amadeus Mozart. The analysis
of the When-in-Rome dataset (middle), and the analysis created by the algorithms
AugmentedNet (Top side) and TonalGraph (Bottom side) are shown in orange and
blue boxes. The orange bar shows a difference in Roman numeral and the red bar
shows a difference in key.

By checking the constructed rhythm tree with the chord with the highest score of each node
(see Figure 5.7), it can be noted that the failure in analyzing measure stems from the harmonic
rhythm selection algorithm (algorithm 1). A more convincing analysis could have been derived
if it selected the chord of a higher subdivision of half-notes instead of quarter-notes.

Figure 5.7: Rhythm tree with the chord of highest score for each node. Orange nodes indicates
the selected nodes.

It is also important to note that TonalGraph can yield very satisfying results when applied
to harmonically simpler pieces. In the initial measures of the theme exposition of Beethoven’s
Variations on "God Save the King" (see Figure 5.8), both AugmentedNet and TonalGraph exhibit
very high accuracy. The 100% accuracy of AugmentedNet can be attributed to the fact that
this piece is included in its training dataset.
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In this example, all the errors arise from differing interpretations of a chord as a passing chord,
with both interpretations being valid. In each case, the ground truth analysis is present in the
rhythm tree at a higher subdivision. It can be noted that AugmentedNet’s result labels the
Am7 chord in measure 2 as a passing G chord, which is slightly incoherent. A more consistent
analysis would be either "m2 V b2.5 vi7 b3 V6" or "m2 V," rather than "m2 V b2.5 V b3 V6."

Figure 5.8: The analysis comparison of the first measures of 7 Variations on "God Save the King"
by Ludwig van Beethoven
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6 Conclusion and Perspectives

The presented method appears to have strong potential, not only achieving satisfying analyses
but also offering a level of interpretability and interactivity that could make it more appealing
than state-of-the-art methods, especially in applications that requires not only the resulting
analysis but also how it was obtained.

By exploring the algorithm’s results and fine-tuning the highly interpretable parameters such
as Roman numeral weights, transition weights, or the formula for harmonic segmentation in the
rhythm tree, further refinement of the method could be achieved by musicians without complete
comprehension of the algorithm.

Therefore, a natural extension of this work would be the development of a harmonic notation
tool that uses interactive graphs for enhanced visualization.

Moreover, the graph theory approach could be expanded to broader types of musical analysis
at higher hierarchical levels. By employing spatio-temporal graphs that capture more complex
musical information, such as textural, structural, or hierarchical elements, and by applying tools
like mathematical morphology on the graph lattice, we could explore the geometric relationships
of similarities in music. This area of study will be the focus of my upcoming thesis.
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