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Abstract

During this internship, which took place in the Real-Time Musical Interactions Team (Ir-
cam) under the supervisation of Diemo Schwarz, I studied the problem of developing vi-
sualisation optimisation algorithms. This work was motivated by the resolution and per-
formance issues that could arise using CataRT, a corpus-based concatenative synthesis
software that allows the user to select short snippets of sound through their position in
a 2D projection of a high-dimensional signal descriptor space, in musical or professional
applications. We first chose to perform the optimisation tasks inside a pre-selected 2D
projection, thus taking a different approach than dimensionality reduction. With the idea
of preserving the physical meaning of the coordinate system axes in mind, I then developed
a range of algorithms that perform geometrical transformations on a two-dimensional set
of points in order to spread it as uniformly as possible across a chosen enclosing shape
(a square, a disk or a polygon). I found that efficient uniformisation was not possible
without introducing distortion (in a sense that will be defined in the report) in the point
set, for which I developed an estimation algorithm. Evaluation of the five most efficient
algorithms were performed on five different geometries, at the end of which two algorithms
clearly stood out: the domains algorithm, a fast, low-distortion introducing algorithm that
provide reasonable uniformisation, and the uniform2D/delaunay algorithm, a hybrid algo-
rithm using a physical model to produce perfectly equally-spaced points distribution with
reasonable distortion.
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Introduction

Ever-larger sound databases, nowadays easily available on the Internet or in sound banks, rep-
resent a great potential for musical creativity. Yet most of this potential may remain hidden
to the user without efficient means of exploring the data: in 2005, for instance, the total dura-
tion of the Creative Commons sound archive archive.org could be estimated to be somewhere
between 34.2 and 2,000 years [2], and has been increasing ever since. Consequently, methods
focusing on content-based music information retrieval have attracted much attention in the
past years, as they allow greater insight on the contents of the soundfiles (thanks to the use of
audio descriptors) than usual keywords classification.

We focus here on corpus-based concatenative synthesis methods that make use of the
descriptors approach to address the problems of creative use and interactive exploration of
large-scale databases. They combine sound segmentation and descriptor analysis of selected
sound files (the corpus) to allow their exploration in a non-linear temporal order. Small sound
segments (refered to as units) can be displayed according to their positions in the descriptor
space, thus allowing the user to interactively select segments according to their sonic contents.
Applications include musical composition, sound design and interactive exploration of the cor-
pus, but also live performances (thinking of the corpus and its representation as an instrument)
and audio installations.

The results obtained during this internship can be applied to CataRT, a corpus-based con-
catenative synthesis software developped by Diemo Schwarz at Ircam (Paris), which allows to
plot the units according to the values of two chosen audio descriptors. The corpus can the be
explored using an XY controller or a multitouch surface, or mapped on a physical surface (for
sound installations), allowing the audience to play sounds according to their positions. How-
ever, it is common that the units form an aggregate in a small region of the plane, with a few
isolated units occupying distant positions. This configuration leave “blanks” in the representa-
tion space, i.e. regions where the units’ density is very low compared to that in the aggregate.
In such cases, this “scientific” plot, though providing crucial informations about the units mu-
tual hierarchy in terms of descriptor values, doesn’t optimise the interaction space available to
the user: most units are located in a small area, and most of the space is not associated with
any unit. This is particularly annoying for music interaction and sound installations, where
one might want to avoid “silent” zones at all costs. The Topophonie ANR-project1, whose
applications include integrating sounds in 3-dimensional computer maps — for instance by
mapping a corpus onto them —, is another situation where silent zones have to be avoided.

The aim of this internship was to develop Matlab algorithms that, through geometrical
transformation of the corpus representation, would optimise the use of the interaction space.
A key aspect in this task was to keep in mind the hierarchical relations between the units
implied by the descriptor values, and try to preserve them as much as possible throughout the
transformation; consequently, the distortion introduced by the algorithms had to be defined
and measured. This report first gives a few elements about corpus-based concatenative syn-

1“The research project Topophonie proposes lines of research and innovative developments for sound
and visual navigation in spaces composed of multiple and disseminated sound and visual elements.”
(http://www.topophonie.fr)

5



Ianis Lallemand ATIAM 2009-2010

thesis and defines more precisely the context in which the aforementioned problem is defined.
Following a bibliographical study, the algorithms are presented according to the dimension of
the underlying geometric transformations: one-dimensional, pseudo two-dimensional and two-
dimensional. Finally, the distortion measure is defined and the five most relevant algorithms
are evaluated on selected corpora.

1 Interests and context of the internship

1.1 An overview of corpus-based concatenative synthesis

Corpus-based concatenative synthesis is a form of concatenative synthesis, which has been in
use in speech synthesis for the past fifteen years. It differs from usual synthesis methods in
the sense that it does not require to build a model of the sound signal that would realistically
generate all of its fine details, which is a very difficult task. Instead, actual recordings are used
to achieve the synthesis expressivity.

Corpus-based approaches are more specific than concatenative synthesis methods, which
refers to using segments of sound data to assemble the resulting sound. The term corpus refers
to methods which selects sound segments automatically out of a chosen database (the corpus),
which differs from using a small number of segments with a predetermined selection [13].
Hence, in corpus-based synthesis, the synthesis expressivity and the corpus size are directly
related.

CataRT is an application of corpus-based concatenative methods2. It combines audio de-
scriptor analysis of the units, extracted from the corpus with a typical length of a few hundreds
millisecond3, with direct selection in real-time thanks to a plot of two chosen descriptor val-
ues. The user interface (cf. Fig. 1) offers different ways of selecting the units, as well as
audio transformations. Descriptor analysis is a key aspect of the approach: as the corpus
size increases (which increases the synthesis expressivity), it is necessary to classify the units
according to quantitative measurements that give a proper insight on their sonic properties.
Two major kinds of descriptors are used in CataRT: segment descriptors, which describe the
units themselves (such as Start Time, Duration, ...), and content descriptors, which describe
the audio content of the units. They are the unit’s average of the instantaneous descriptor
values that are calculated each 40 ms. In this report, I chose to use the following descriptors in
the corpus examples: Spectral Centroid, Periodicity, Note Number, Start Time and Unit ID.

• the Spectral Centroid (measured in Hertz) is defined as the center of gravity of the FFT
magnitude spectrum. It is closely related to the perception of brightness;

• the Periodicity measures the harmonic character against the noisy character of the sound;

• the Note Number is the fundamental frequency of the unit in fractional MIDI notation;

• the Start Time is the start time of the unit in the sound file in ms;

• the Unit ID is the unit unique index.

2for an extensive and historical review of the existing approaches, see [12].
3CataRT features different segmentation methods: in this report, I used the chop mode, which segments

audio into equal-sized units every given ms, and the Yin note segmentation, which segments audio per change
of pitch.
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Figure 1: CataRT user interface.

1.2 Applications and restrictions due to current visualisation methods

Audio descriptor analysis and real-time unit selection allows different kinds of applications.
A first example is interactive exploration of the corpus, whose aim might be to look for a
specific event in a large database. One can imagine, for instance, a sound designer looking for
a specific sound in a sound bank, or trying to locate glitches in audio recordings (which can be
easily located with the use of the proper descriptors, as their audio characteristics are radically
different from those of the “normal” bits of the recordings).

Another example is the creative use of a selected corpus and of the synthesis capabilities of
the software. The corpus can be “played” by navigating through the descriptor space, selecting
units with a physical interface such as the computer mouse, a XY controller or a multitouch
surface. This can be described by the term free synthesis, and can take place in the composition
or sound design process, i.e. in the studio, or in the context of live performances.

Finally, the link between sound and a 2-dimensional surface that the descriptor plot cre-
ates can be used in sound installations, where a corpus can be mapped onto a surface, thus
allowing the audience to play sound as it touches the surface or moves across it. This kind of
mapping can also be made virtually: the ANR-project Topophonie aims to integrate sounds
in 3-dimensional computer maps, to recreate ambiances and augment the user experience.

All of these applications rely on a visualisation of the corpus, that CataRT provides through
the plot of two descriptors. In a field recording case for instance (a typical corpus example),
most units will be sonically close to each other, with only a few distinct events happening from
time to time in the recording. When plotting their positions in a “scientific” way, i.e. giving
each unit the precise position it has according to the value of the chosen descriptors, it is very
likely that most units will be part of an aggregate. The remaining units, having marginal
descriptor values, will be located outside these high-density areas. The density non-uniformity
may pose different problems to the user interested in aforementioned applications.

First of all, the fact that most units are located in a small area compared to that occupied
by the whole unit set poses a resolution problem. One can not simultaneously interact with
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units in an aggregate and marginal units with the same precision amount; in fact, it is common
that one cannot visually differentiate the units in the aggregate one from another, due to the
great number of segments involved.

As shown in figure 2, where a XY controller with superimposed units position can be seen,
another problem is that low density regions cause blank areas to occupy most of the interaction
space. This might be a problem in the case of a multiple-corpus based live performance without
visual feedback (which is not available on most XY controllers, to the exception of multitouch
screens), in which it would not be possible to memorize the units’ positions for each corpus, as
well as in the case of sound installations (and Topophonie applications) where the blank areas
would be unwanted “silent” zones.

Figure 2: XY controller with superimposed units.

1.3 Chosen approach and objectives

According to Schneiderman’s information seeking mantra [19], a solution to the resolution
problem might be to filter the amount of units to display, then to allow the user to zoom
inside the aggregate for improved resolution. Though this solution might present advantages
of its own, I focused on another approach during this internship, due to the contexts in which
interactions with the corpus might take place.

In the case of free synthesis for instance, it seems natural to interact with the corpus using
a XY square-shaped controller, as the units are plotted by considering the chosen descriptors
as orthonormal coordinates. Although multitouch display surfaces have become more widely
available recently, most XY controllers don’t offer a visual feedback of what is happening on the
computer screen. In this context, as well as in the case of a sound installation in which a corpus
is mapped onto a physical space, it seems more appropriate to adopt a static mapping between
the corpus and the XY surface. This defines one of the first objectives of the algorithms that I
had to develop in this internship: to maintain simultaneous access to all of the units in a selected
enclosed space, while improving separability of the units which are initially very close to each
other. As most controllers are square-shaped, I chose the square as the main interaction space
example; however, as sound installations and Topophonie applications may benefit for other
kinds of interaction space, I provided solutions for disk-shaped and polygon-shaped spaces.

Being given an enclosing interaction space, this first goal naturally translates in terms of
units density uniformisation. In a sense, spreading the units through the space to reduce the
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density non-uniformities corresponds to an optimal use of the interaction space : in the ideal
case of equally-spaced units, each unit will dispose of the same area for its selection.

The high-dimensional context of the descriptor space, and the fact that only two descrip-
tors are used for visualisation, suggest that dimensionality reduction methods such as PCA
might be helpful in finding a convenient corpus visualisation. However, the new coordinate
system provided by PCA does not have physical meaning, as opposed to the original descriptor
coordinate system. In this internship, we consequently chose to perform a geometric transfor-
mation of an existing projection defined by two selected descriptors, so that the axis used in
the optimised visualisation are still associated with clearly identified audio properties. This
approach, which focuses on preserving one of the strengths of the CataRT synthesis method
(the audio descriptor analysis and quantitative classification of audio units), would not be con-
sistent if the original hierarchical relations between units, given by the descriptor values, were
not preserved as much as possible throughout the transformation. This constraint constituted
the objectives of the algorithms: to introduce as little distortion in the corpus as possible, in a
sense that had to be defined. Hence a distortion measure algorithm had also to be developed
(detailed in 6.1).

2 Bibliographical study

2.1 Data visualisation methods

As units are represented as a point cloud in CataRT, data visualisation methods are natural
possible bibliographical references. However, I found that most methods followed the previously
mentioned Schneiderman’s information seeking mantra [19], for instance in the context of
providing efficient visualisation methods in small screen displays [1] (whose sizes are not far
from those of most XY controllers). According to Schneiderman, the visualisation must support
the following kinds of interaction: details on demand, zoom and filter ; two of them are related
to our visualisation context:

• zoom: data overlapping due to high concentration of units in small areas prevent the
user to accurately select a particular unit, a task made possible by zooming close enough
in the high-density region. However, for the reasons explained in 1.3, this approach was
not studied during this internship;

• filter : this method aims at preventing data overlapping by removing certain units from
the visualisation. On the contrary, the approach I followed during this internship tries
to preserve simultaneous access to all of the units.

Although not corresponding to my objectives during this internship, it has to be noted that
these methods might be useful for adding multiple-scale representations to CataRT display - a
task that might be of interest in the case of very large corpora. Examples of advanced zoom–
based approached can be found in [21] and [22], where multiple “fish-eye” lenses are combined
with dimensionality reduction methods.

The algorithms developed during this internship differ from most data visualisation meth-
ods in the sense that, by performing geometrical transformations over units positions, they
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alter the descriptor value and hence, the data itself. Consequently, our approach seems closer
to the field of data normalisation than to that of data visualisation.

2.2 Character normalisation methods

Relevant algorithms were found in the field of character normalisation for recognition of hand-
written letters. I found that the first algorithms described in [24] could be related to the
uniform2D algorithm I had developed soon after the beginning of the internship. However,
character normalisation for letters recognition aims at preserving the overall shape of the let-
ter, and the article thus describes improvements that no longer correspond to the internship
context.

2.3 Mass spring damper algorithms

As detailed in 5.2, one of the most efficient algorithm developed during this internship is
based on a physical mass spring damper system. Mass spring damper-based algorithms had
previously been studied by Diemo Schwarz and Norbert Schnell at the IMTR team [17]. A mass
spring damper system was first applied to an existing projection (which is the chosen context in
this internship) to avoid overlapping point by pushing them appart (cf. Fig. 3). This algorithm
shares a similar physical model to that of the delaunay algorithm detailed in 5.2, although the
algorithm developed during this internship was not inspired by this one but by that of the
distmesh toolbox (as detailed in 5.1 and 5.2). The main mass spring damper-relating result
in [17] is a dimensionality reduction algorithm, which puts it out of the chosen context for
the internship. However, the comparison between dimensionality reduction approaches and
geometrical transformations of an existing projection, as well as the combined use of these two
methods, are essential issues that will have to be studied in the future.

Figure 3: Effect of repulsion algorithm detailed in [17] (right) on a cluster (left).

3 One-dimensional algorithms

3.1 First constraint model: conservation of units order on each axis

As a key constraint that algorithms had to fulfill as much as possible, “preserving the hierar-
chical relations between units in the chosen projection” had first to be defined more precisely.
It appeared quite naturally that an ideal transformation in regards to this constraint would
preserve the units’ order on each axis. I defined this “zero-distortion” case by considering
that the only unwanted effect of a geometrical transformation would be to modify the relative
positions of units on any of the two descriptor axes: as the approach of working on an existing
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2-dimensional projection of the high-dimensional descriptor space was motivated by the will
to preserve the physical meaning of the coordinate system, it is necessary that an increase in
unit positions along each axis still corresponds after the transformation to an increase in the
corresponding descriptor values.

The aspect of the “hierarchical relations between units” I didn’t chose to take into account
in the definition of the zero-distortion case is how their descriptor values compare to each other:
for instance, an algorithm that brings close to each other two originally distant units can still
introduce no distortion as long as the units order on each axis is preserved. When using the
transformed units representation, the user might consequently experience the expected increase
in descriptor values as he moves towards higher positions in the coordinate system, but might
not be able to predict how much increase in these values a displacement may bring. This
choice was motivated by the very aim of the algorithms: to normalise the units density in a
selected enclosing shape, which would result in equally-spaced units. However, preserving the
original distance between units4 might be desirable in some situations, and the objectives in
the context of this internship should be considered as the first step towards more configurable
transformations.

3.2 A simple 1D algorithm: the uniform algorithm

This one-dimensional algorithm was the first to be developed: it is a one-dimensional realisation
of the two objectives that algorithms were suppose to fulfill. The reason I chose to consider a 1-
dimensional algorithm, i.e. an algorithm that would work on the values of only one descriptor,
is that an intuitive notion of order can only be found in 1D. Using 2-dimensional orders such as
lexicographical order would assume that one of the two descriptors has more importance than
the other one, which obviously does not suit the idea behind CataRT visualisation. For this
reason it seemed natural to study the behavior of 1-dimensional algorithms, which could then
be applied independently on each descriptor values. Although one might expect this approach
to provide limited results due to its simplistic nature, it has the advantage of easily providing
examples of zero-distortion algorithm.

The uniform algorithm normalises the units density of a single descriptor while preserving
the units order. It works in three steps:

• step 1: units are sorted and their position in the sorted list is given as a function of
their position in the unsorted list. For the unit occupying the position i in the unsorted
list, the position in the sorted list is n(i);

• step 2: the output list is filled in the same order than the original unsorted list. For
each position i, a descriptor value of n(i) is given;

• step 3: the ouptut list values are normalised between 0 and 1.

Choosing units order indexes as the new descriptor value is the simplest way to ensure
density uniformisation and conservation of units order throughout the transformation. The
action of the uniform algorithm was first observed on randomly generated Gaussian distributed
values (cf. Fig. 4). Theses values are plotted on the x-axis, while Unit ID descriptor values
(which are uniformly distributed by definition) are used on the y-axis for convenience.

4Either in the selected projection or in the high-dimensional descriptor space (cf. 6.4).
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Figure 4: Action of the uniform algorithm on Gaussian distributed units. Left: before transformation;
right: after transformation.

Figure 4 shows encouraging results: although the algorithm acts on the x-axis without
taking into account the y-axis descriptor values (which explains why it does not produce
equally-spaced units), it manages quite well to spread the units inside the enclosing square.
However, as figure 5 shows it, this appears to be largely due to the simple nature of the
Gaussian distribution used in figure 4. Using descriptor values obtained from audio analysis
of an actual recording (the madeleine corpus), the limits of not taking into account the y-axis
descriptor values are clearly apparent: although descriptor values are equally spaced on each
axis (by definition of the Unit ID descriptor and thanks to the action of the uniform algorithm
on the Spectral Centroid descriptor), units are far from being uniformly distributed in their
2-dimensional representation.

3.3 Mathematical formulation of the uniform algorithm

The uniform algorithm can also be defined by finding a mathematical function which would
give the new descriptor values in function of the original ones. In order to preserve the values
order throughout the transformation, this has to be a strictly increasing function. It seemed
natural to try to compute this function from an evaluation of the units 1D-density (using only
one descriptor values).

The density estimation is carried on by the KDE Matlab toolbox5, which implements
Kernel Density Estimation [20]. Kernel Density Estimation provides an x-axis estimate f̂ of
the density function f in the form of a sum of variations of a kernel function K:

f̂ =
1
nh

n∑
i=1

K

(
x−Xi

h

)
where n is the number of kernels used for estimation, Xi the center of Kernel n◦i and h a
smoothing parameter called the bandwidth. The KDE toolbox determines the optimal number

5http://www.mathworks.com/matlabcentral/fileexchange/14034-kernel-density-estimator
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Figure 5: Action of the uniform algorithm on Spectral Centroid descriptor values (madeleine corpus).
Left: before transformation; right: after transformation.

and centers positions of kernels (parameters n and Xi) and the optimal bandwidth, using a
Gaussian kernel function with mean zero and variance 1. This kernel function shows clearly
the effect of the h parameter:

K

(
x−Xi

h

)
=

1√
2π

exp
(

(x−Xi)2

2h2

)
hence the variance is controlled indirectly through h.

Firsts tests suggested that the distribution function F (the primitive of the density function,
cf. Fig 6) provided the same results as the uniform algorithm, i.e. that the output values were
uniformly distributed; I later found that this intuition was mathematically exact. Denoting as
X the random variable that gives the x-axis descriptor values, the modified descriptor values
are given by the random variable F (X). Considering the probability for F (X) to take a value
under y, we have:

P (F (X) < y) =
∫

R
1 (F (x) < y) f(x)dx

=
∫ F−1(y)

−∞
f(x)dx

= F
(
F−1(y)

)
= y

which shows that F(X) is uniformly distributed. Although not crucial to the uniform algorithm,
this mathematical formulation allows to express it in a more general way and will be used in
improved algorithms.
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Figure 6: Units density f on x-axis (left) and corresponding primitive F (right).

3.4 A 2D extension: the uniform2D algorithm

Previous examples consisted in applying the uniform algorithm on a single descriptor, while
setting the second descriptor to Unit ID for visualisation convenience. The uniform2D algo-
rithm is the simplest possible extension of the uniform algorithm to the case of two descriptors:
it simply consists in applying independent uniform algorithms on each axis. Predictably, the
independent actions of the algorithms, while ensuring uniform repartition of the units projec-
tions on each axis, does not result in equally-spaced units in the 2D plane. Figure 7 shows
the action of the uniform2D algorithm on Spectral Centroid and Periodicity descriptor values
of the madeleine corpus. The independent action of the algorithm on each axis is particu-
larly visible there, since the bottom left part of the square remains blank: this is because the
units that had the lowest x-axis descriptor values were located in the upper half of the y-axis
descriptor values prior to the transformation.

It is then easy to imagine a worst-case scenario for this algorithm: as figure 8 shows it,
Gaussian descriptor values with two gaussian centers located at the same position on each
axis result in a critical situation where the algorithm cannot spread the units of the bottom
left gaussian center to the entire square domain, as (to the exception of a few units) their
coordinates have lower values than those of any unit in the top right center.
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Figure 7: Action of the uniform2D algorithm on Spectral Centroid and Periodicity descriptor values
(madeleine corpus). Left: before transformation; right: after transformation.
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Figure 8: Action of the uniform2D algorithm on Gaussian descriptor values. Left: before transforma-
tion; right: after transformation.

4 Pseudo two-dimensional and two-dimensional algorithms

4.1 The domains algorithm

The situation depicted in figure 8 might inspire a way of improving the uniform2D algorithm.
As illustrated by figure 9, one might want to move the transformed units to the blank zones
of the enclosing square. However, this poses two distinct problems.

First of all, this further transformation of the descriptor values would break the conservation
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Figure 9: Modified Gaussian descriptor values and expected displacements for algorithm improvement.

of units order on each axis, hence introducing distortion. Yet it is clear that the zero-distortion
constraint can only result in situations similar to that of figure 8, and has to be relaxed to
improve the units spread across the square. As distortion should still remain as low as possible,
this statement stresses the need of a distortion measure algorithm, which will be detailed in
26.

The second problem is that the further displacements of the units symbolised by the arrows
in figure 9 favorises the x-axis over the y-axis, which is not conceptually satisfying. Due to
the symmetry of this example, it is clear that horizontals displacements were here chosen
arbitrarily and had no reasons to be favored over vertical arrows. However, even in cases
were a direction might appear more suited to the geometry of the units set than the other
one, an algorithm based on the currently discussed improvement of uniform2D will only be a
pseudo-2-dimensional algorithm.

Although it was clear that true 2-dimensional algorithms would be more satisfying, I de-
veloped the domains algorithm based on the idea of a pseudo-2D algorithm that would allow
some distortion to be introduced through the transformation. This algorithm was built with
the worst-case scenario of the Gaussian descriptor values (from now on, this term will refer
to the situation shown in the left part of figure 8, with two Gaussian centers on each axis) in
mind. It works according to the following three steps:

• step 1: the uniform algorithm is applied on y-axis descriptor values, and resulting values
normalised between 0 and 1;

• step 2: equally-wide domains are defined on the y-axis. Inside each domain i, the x-
axis density of the enclosed points (i.e. the density of their projection on the x-axis) is
estimated using Kernel Density Estimation, and the corresponding distribution function
Fi is computed and normalised between 0 and 1;

• step 3: independent uniform algorithms are applied in each domain using the distribu-
tion functions. To limit distortion due to abrupt changes in x-axis displacements between
two units having close y-axis descriptor values but belonging to different domains, the
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x-axis output position for a given unit is interpolated. A unit of x-axis coordinate x in
domain i gets 0.5Fi−1(x) + 0.5Fi(x) as a new x-axis coordinate if it is located on the
lower boundary of i, and 0.5Fi(x) + 0.5Fi+1(x) if its is located on the upper boundary.
X-axis output coordinates are linearly interpolated between these two values according
to the y-axis position of the unit inside i, so that a unit in the middle of i gets Fi(x) as
a new x-axis coordinate6.

These steps are summed up in figure 10, as well as expected displacements inside each
domain. No arrow is shown in the middle domain since it is hard to predict the effect of
the algorithm in this area which encloses units from both Gaussian centers; for this reason,
it seemed preferable to use more than five domains in practice. The action of the algorithm
was observed on the Gaussian descriptor values that inspired its design, using ten domains (a
number which then proved to work well with all the corpora the algorithm was tried on). As
figure 11 shows it, the algorithm performs quite well with Gaussian descriptor values.

Figure 12 shows the action of the domains algorithm on Spectral Centroid and Periodicity
descriptor values from the madeleine corpus. In this context, the algorithm performs quite
well, as units are efficiently spread across the whole square. However, this statement must be
tempered by the measure of the distortion introduced by the algorithm, which will be discussed
in 6.3.
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Figure 10: The domains algorithm. First step (left): the uniform algorithm is applied on y-axis
descriptor values; second and third steps (right): independent uniform algorithms are applied on x-axis
descriptor values inside each domain (delimited by blue lines).

6No interpolation takes place in the lower half of the first domain and the upper half of the last domain.
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Figure 11: Action of the domains algorithm on Gaussian descriptor values. Left: before transformation;
right: after transformation.
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Figure 12: Action of the domains algorithm on Spectral Centroid and Periodicity descriptor values
(madeleine corpus). Left: before transformation; right: after transformation.
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4.2 The grid algorithm

The grid algorithm was developed in order to provide a more conceptually satisfying version
of the domains algorithm. As no dimension had to be favored over another, the idea of
computing the displacement field on a regular grid to interpolate the units displacements was
used. This approach extends the concept of dividing the y-axis into smaller areas (introduced
in the domains algorithm) to both descriptors. The following steps are used:

• step 1: the 2-dimensional units density is estimated using the KDE2D Matlab toolbox,
and the distribution function is computed (cf. Fig. 13);

• step 2: the mesh (square grid) on which the density and distribution functions are
estimated provide the sampling points on which the displacement field is computed (in
this report, 28 points were used). On each horizontal or vertical line of the grid, which
is made of equally spaced grid points, the corresponding horizontal or vertical section
of the 2D distribution function is used to compute the new positions of the grid points
according the uniform algorithm7. On each line, the new positions values are normalised
between 0 and 1;

• step 3: the new grid provides the coordinates of the new positions of the original grid
points. These two grids define the sampled displacement field of the transformation and
are used to interpolate the new positions of the units.

Figure 14 shows the action of the algorithm on Gaussian descriptor values. The curved
shape in the top right part of the enclosing square can be explained by looking at the distri-
bution function in figure 13. As the origin of the integral that gives the distribution function
is located in the lower-left corner of the square, the mesh points located around the top-right
Gaussian center only correspond to high distribution function values: as these points are the
ones that will be used to interpolate this Gaussian units new positions, this explain why the top-
right Gaussian cannot spread across the whole square and is pushed in its upper-right corner.
Because of the normalisation of the grid points new positions, one may expect the bottom-left
Gaussian center to be fully spread across the square. Displaying the units displacements, as
done in figure 15, confirm this prediction.

The fact that the top-right Gaussian center is pushed in the upper-right corner of the
square, and that it gets mixed with units from the bottom-left Gaussian center (cf. Fig. 15),
is clearly a problem here. However, since the algorithm does not favor one dimension over
another, it is a good candidate for an iterated algorithm. Figure 16 shows the action of the
algorithm on Gaussian descriptor values, after 10 and 20 iterations. The iterated algorithm
seems to work pretty well in spreading the units, although one may expect the introduced
distortion to be very high in this case. Interestingly, a diagonal line of very close units can
be seen in figure 16 (left). As displaying the units displacement for the transformation shows
it (cf. Fig. 17), the units on both sides of this line correspond to the two original Gaussian
centers, with the exception of a few units from the lower-left Gaussian center that end up in
the upper-right side of the line.

7Unlike the domains algorithm, the mathematical formulation of the uniform algorithm is there crucial, as
horizontal and vertical displacements are computed according to sections of the 2-dimensional density.
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Figure 13: Units 2D density (madeleine corpus) (left) and corresponding primitive (right).
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Figure 14: Action of the grid algorithm on Gaussian descriptor values. Left: before transformation;
right: after transformation.
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Gaussian descriptor values (red: original; blue:modified)

G
au

ss
ia

n 
de

sc
rip

to
r 

va
lu

es
 (

re
d:

 o
rig

in
al

; b
lu

e:
m

od
ifi

ed
)

Figure 15: Displacement field (cyan dashed lines) for the grid algorithm from original Gaussian units
positions (red) to modified units positions (blue).
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Figure 16: Action of the iterated grid algorithm on Gaussian descriptor values. Left: after 10 iterations;
right: after 20 iterations.

21



Ianis Lallemand ATIAM 2009-2010

Gaussian descriptor values (red: original; blue:modified)
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Figure 17: Displacement field (cyan dashed lines) for the iterated grid algorithm from original Gaussian
units positions (red) to modified units positions (blue) (after 10 iterations).

4.3 A conformal mapping-based algorithm: the conformal algorithm

A conformal map refers to a function that preserves angles. Conformal mapping usually takes
the form of a mapping between two domains of the complex plane, and is widely used in
fluid mechanics to map a complex geometry to a simpler one in order to compute the flow
properties. As shown in figure 18, the angle-preservation property ensures that cells of a grid
don’t interpenetrate each other during the transformation, which implies that the relative
positions of the cells in the transformed bounding shape remain the same as in the original
grid. For this reason, an algorithm based on conformal mapping could introduce reasonable
distortion, besides being conceptually satisfying due to the true 2-dimensional nature of the
geometric transformation behind it.

Figure 18: Conformal mapping of a grid.

The conformal algorithm is based on a particular class of conformal mappings known as the
Schwarz-Christoffel mapping. For any polygon in the complex plane, the Riemann mapping
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theorem states that there is a bijective biholomorphic mapping f from the upper half-plane to
the interior of the polygon, that maps the real axis to the edges of the polygon. If the polygon
vertices are denoted w1, . . . , wn, and α1π, . . . , αnπ are the interior angles at the vertices, the
mapping f is given by:

f(z) = f(z0) + c

∫ z

z0

n−1∏
j=1

(ζ − zj)αj−1 dζ

were z1, . . . , zn are the real pre-images of the vertices (cf. Fig. 19). They satisfy z1 < z2 <
. . . < zn = ∞. The main difficulty with this formula is that in most cases, the prevertices
cannot be computed analytically. Although details of the numerical calculations of the Schwarz-
Christoffel mapping parameters are beyond the scope of this report, it has to be noted that
three of them can be fixed arbitrarily before the other ones can be determined uniquely by
solving a system of nonlinear equations. Once this parameter problem is solved, the constants
c and f(z0) are determined uniquely by the polygon [3].

Figure 1: Notat ional convent ions for the Schwarz–Chr istoffel t ransformat ion. In this case z1
and z2 are mathemat ical ly dist inct but graphical ly difcult to dist inguish.

2 I n t r oduct i on

2.1 Schwar z–Chr i st of fel mappi ng

The basic Schwarz–Chr istoffel formula is a recipe for a conformal map f from the complex
upper half-plane (the canon i cal domai n ) to the inter ior of a polygon (thephysi cal domai n ).
The “polygon” may have cracks or ver t ices at innity. I ts ver t ices are denoted w1, . . . , wn , and
the numbers α1π, . . . , αnπ are the inter ior angles at the ver t ices.2 The pre-images of the
ver t ices, or pr ever t i ces, are real and denoted by z1, . . . , zn . They sat isfy

z1 < z2 < · · · < zn = ∞ .

Figure 1 i l lust rates these denit ions.
I f ver tex w j is nite, 0 < α j ≤ 2. I f w j is innite, − 2 ≤ α j ≤ 0.3 A necessary const raint is

that
n

j = 1

α j = n − 2.

Essent ial ly, this means that the total turn is 2π.
The Schwar z–Chr i st of fel for mu la for the map f is

f (z) = f (z0) + c
z

z0

n−

j = 1

(ζ − zj )
α j − 1 dζ. (1)

The main pract ical di fculty with this formula is that except in special cases, the prever t ices
zj cannot be computed analyt ical ly. Because Möbius t ransformat ions have three degrees of

2Ear l ier versions of the toolbox, and much of the l i terature, instead use β1 , . . . , βn , where β j = α j − 1.
3This is consistent at the point at innity with the not ion of “inter ior angle” as the signed angle swept from the

outgoing edge, through the inter ior, to the incoming edge.

2

Figure 19: Notational conventions for the Schwarz-Christoffel transformation.

Composing the Schwarz-Christoffel formula with standard conformal maps leads to vari-
ations that allow mappings from other domains. In this internship, I focused on mappings
from a square and a disk onto a polygon8. Although the Schwarz-Christoffel variations give
the maps from a disk or a square onto a polygon, which corresponds to the opposite order
of what the algorithms studied in this internship are supposed to do, the bijective character
of the mappings allow to numerically obtain maps from a polygon to a disk and a square.
Consequently, one has first to define a polygon in the corpus projection plane prior to using
conformal mapping. Drawing a polygon that encloses all the units would obviously result in a
far less efficient transformation than one based on a polygon enclosing only the high-density
regions of the projection plane. However, this poses a problem as the mapping is not defined
outside the polygon. Consequently, the transformations I realised with conformal mappings
deleted the points outside the polygon, which I defined by hand to conduct the first tests. Fig-
ure 20 shows units positions for the madeleine corpus with Spectral Centroid and Periodicity
descriptors, as well as the polygon used to define the Schwarz-Christoffel mapping.

The conformal algorithm starts by defining a polygon in the projection plane of the corpus,
then transforms the enclosed units according to a Schwarz-Christoffel map. The numerical
calculations are carried on by the Schwarz-Christoffel toolbox for Matlab [3],[4]. Figure 21

8I will continue to refer to these mappings as Schwarz-Christoffel mappings.
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shows the action of the conformal algorithm on Spectral Centroid and Periodicity descriptor
values for the madeleine corpus, with mappings to a square and a disk. This algorithm seems
less efficient than previous solutions, and poses the problem of choosing how to define the input
polygon and the algorithm behavior towards units located outside it. For these reasons, I chose
to keep the conformal algorithm in a draft state to focus on other solutions. As it causes the
deletion of some of the units, this algorithm is not part of the evaluative study conduced in 6.
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Figure 20: Units positions for madeleine corpus with Spectral Centroid and Periodicity descriptors,
shown with the polygon used in the conformal algorithm.
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Figure 21: Action of the conformal algorithm on Spectral Centroid and Periodicity descriptor values
(madeleine corpus). Left: mapping to a square; right: mapping to a disk.
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5 Physical and hybrid algorithms

5.1 The distmesh toolbox for mesh generation

The mesh-based approach used in the grid algorithm motivated the search for a way to define
a mesh over the units set initial geometry. The idea was to transform this mesh to a regular
square grid, and use the old and new meshes to interpolate the units new positions (as in the
grid algorithm). The distmesh Matlab toolbox [9] generates unstructured triangular meshes
using a physical algorithm. The authors’ motivation was to “develop a mesh generator that
[could] be described in a few dozen lines of Matlab” [9]. This simplicity and the physical
nature of the algorithm were the essential reasons why I chose to use this toolbox. It was
flexible enough to allow me to use it in a different way than the one it was intended to, and
develop the delaunay algorithm detailed in 5.2.

The distmesh algorithm is based on a simple mechanical analogy between a triangular mesh
and a 2-D truss structure, or equivalently a structure of springs. The desired mesh geometry
can be specified by providing a desired edge length function h(x, y). The region over which the
mesh is to be defined is represented by its signed distance function, which gives the distance
from any point in the plane to the closest region boundary. This function takes negative values
inside the region and equals 0 on its boundary. The algorithm proceeds according to the
following steps:

• step 1: an initial, uniformly distributed set of points (the future mesh vertices) is created
in the bounding box enclosing the region in the form of a mesh of equilateral triangles;

• step 2: points outside the region are removed. If the desired mesh is non-uniform, further
points are removed according to a probability distribution defined in [9] to improve the
algorithm convergence speed, which is higher when the initial points distribution is not
uniform9;

• enter loop:

– step 3: a Delaunay triangulation10 of the points is performed during the first
iteration. In further iterations, the triangulation only takes place again if mesh
points have moved more than a control distance ttol during the previous iteration;

– step 4: mesh points positions are updated according to a physical algorithm. The
triangulation defines a truss structure where edges of the triangles (the connections
between pairs of points) correspond to bars, and points correspond to joints of
the truss. Each bar has a force-displacement relationship f(l, l0) depending on its
current length l and its unextended length l0 (which is constant for uniform meshes).
A linear spring force is chosen for repulsive forces (f(l, l0) = k(l0 − l) for l < l0),
and no attractive forces are allowed (f(l, l0) = 0 for l ≥ l0). This repulsive-forces
only model is designed to help points spread out across the whole geometry, hence
generating a proper mesh.

– step 5: points that go outside the region during step 4 are moved back to the
closest boundary point. This corresponds to the physical image of external reaction

9This feature will not be described in this report, as the delaunay algorithm does not make use of it.
10A Delaunay triangulation for a set P of points in the plane is a triangulation DT(P) such that no point in

P is inside the circumcircle of any triangle in DT(P).
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forces on the truss structure, that act normal to the boundary; hence points can
move along the boundary, but not go outside.

– if all interiors nodes move less than a control distance dptol, exit loop. Otherwise,
go back to step 3.

Figure 22 shows the steps leading to the generation of a non-uniform triangular mesh over
a region of the plane.

1−2: Distribute points 3: Triangulate 4−7: Force equilibrium1-2: distribute points 3: triangulate 4-5: force equilibrium

Figure 22: Steps leading to the generation of a non-uniform triangular mesh.

5.2 A distmesh-inspired physical algorithm: the delaunay algorithm

Studying the way the distmesh algorithm worked, I had the idea of applying it to the units in
the projection plane, taking them as the initial set of points of the distmesh algorithm (the
“vertices”). This modified version of the distmesh algorithm, where steps 1 and 2 are replaced
by loading the units coordinate values (which are first normalised so that no unit is outside
the region over which we want them to spread) constitutes the delaunay algorithm, which only
makes use of the uniform-mesh generating capabilities of the distmesh algorithm. Although
only very partially explored in this internship, the opportunity to generate non-uniform meshes
(which translates in this context as non-uniform units distribution over a desired region) is very
interesting and could give birth to more configurable algorithms, as described in 6.4. It has to
be noted that, if the purpose of the distmesh algorithm is to generate a mesh which is often
the intermediate step of a bigger process, the output of the delaunay algorithm is no longer
considered as a mesh since it constitutes the transformed units positions themselves. In other
words, although based on the same physical model, the delaunay algorithm is used in a very
different context than distmesh, of which it constitues an unexpected variation.

The action of the delaunay algorithm was first observed for a mapping onto a square
region, which contained the initial units positions. Due to the physical nature of the algorithm,
parameters were expected to have a big influence on whether it would converge or not. However,
default parameters of the distmesh toolbox gave excellent results in terms of robustness, with no
cases of non-converging situations observed. Besides these default values, the signed distance
function of the square region had to be provided, which is a fairly simple task since it can
be computed analytically. The initial units descriptor values are shifted so that the units
distribution barycenter corresponds to the center of the destination square, in order to prevent
it to be located too close to the square boundaries (which would slow down the convergence).
I found that normalising the descriptor values so that to leave a small blank area between
the units and the square boundaries further accelerated the convergence of the algorithm. As
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can be seen on figure 23, the algorithm performs very well on Gaussian descriptor values.
It produces perfectly equally-spaced units positions, and the displacements from the original
Gaussian centers to the new positions appear to be symmetrical, which is satisfying being given
the symmetrical nature of the initial distribution.

Gaussian descriptor values (modified)

G
au

ss
ia

n 
de

sc
rip

to
r 

va
lu

es
 (

m
od

ifi
ed

)

Gaussian descriptor values (red: original; blue:modified)
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Figure 23: Left: action of the delaunay algorithm on Gaussian descriptor values (mapping to a square);
right: corresponding displacement field (cyan dashed lines) from original units positions (red) to mod-
ified units positions (blue).

Figure 24 shows the action of the algorithm on Gaussian descriptor values, with mapping
to a disk. Mapping to a disk is not more difficult than mapping to a square, since the signed
distance function of the circle can be computed analytically. This is clearly a strong advantage
of this algorithm, since it could allow the units to be mapped to circular interaction devices
such as the ReacTable for instance. As can be seen by plotting the displacements from the
original units positions to the new ones, the transformation also seems symmetrical in this
case.

In order to allow mapping to more general geometries, which could be useful in the case of
sound installations for instance, or in the Topophonie project, mappings to polygons were also
considered. Although the distmesh toolbox provided an algorithm for computing numerically
the signed distance function of a polygon, I found that the delaunay algorithm was not able
to converge using it. Consequently, I looked for another way of estimating the signed distance
function of a polygon and used an iterative signed distance function estimator implemented in
the Matlab Toolbox of Level Set Methods. This routine enables to compute the signed distance
function on each node of a regular grid defined over the polygon, which gives a sampled signed
distance function estimation. This estimation is then provided to a simple routine of the
distmesh toolbox which uses it to interpolate the signed distance function value at any point
of the plane.

The theory of level set methods, how it relates to signed distance functions estimation and
the way it is implemented in the used Matlab toolbox is beyond the scope of this internship
report. For this reason, and also because of the prospective nature of the polygonal mappings
this estimation was needed for, I chose to invest more time on tuning the parameters of
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Gaussian descriptor values (modified)
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Gaussian descriptor values (red: original; blue:modified)

G
au

ss
ia

n 
de

sc
rip

to
r 

va
lu

es
 (

re
d:

 o
rig

in
al

; b
lu

e:
m

od
ifi

ed
)

Figure 24: Left: action of the delaunay algorithm on Gaussian descriptor values (mapping to a disk);
right: corresponding displacement field (cyan dashed lines) from original units positions (red) to mod-
ified units positions (blue).

the delaunay algorithm to improve the robustness of the algorithm. However, although the
delaunay algorithm with optimised parameters for mapping to polygons was able to converge
in most cases, a few unsuccessful situations remained. Corresponding results are presented in
A.2.

5.3 A hybrid algorithm: the uniform2D/delaunay algorithm

This improved version of the delaunay algorithm is an attempt to adapt the initial units
distribution to be as close as possible to the distmesh algorithm context, to improve robustness
and speed. In the distmesh algorithm used to generate a uniform mesh, initial mesh points are
uniformly distributed. As units play the role of mesh points in the delaunay algorithm, I figured
out that the uniform2D algorithm could be applied to them before any further transformation,
in order to make their distribution closer to the uniform case. Besides improved robustness
and convergence speed, lower distortion values were also expected with this approach as the
uniform2D algorithm introduced no distortion and the first normalisation it produced allowed
better positioning of the units in the enclosing shapes onto which the delaunay algorithm would
map them (square, circle or polygon). Figure 25 describes the uniform2D/delaunay algorithm
in the case of the mapping to a square. Results and distortion measure values are presented
in 6.3.

6 Evaluation

6.1 Quantitative distortion measure

Though visual examination of the algorithms outputs provides a first criterion for evaluating
their efficiency, it is necessary to compare them in terms of the amount of distortion they
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Spectral Centroid (red: first normalisation; black: final values)
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Figure 25: The uniform2D/delaunay algorithm (mapping to a square). First step (red): the uniform2D
algorithm is applied on descriptor values, and resulting values are normalised to fit a smaller square
than the one to map to; second step (black): the delaunay algorithm is applied on the normalised
descriptor values.

introduce during the transformation. To perform this task, I developed an algorithm that
provides different informations to assess the introduced distortion. Since the zero-distortion
case had been defined as the case where the transformation preserves the order of the units
projection on each axis, the algorithm computes measures that help to assess how far a specific
algorithm is from this ideal case. We decided that considering unique pairs of units would
be the best way to check if one or two of their coordinates had been exchanged during the
transformation.

With this data structure in mind, I designed the representation shown in figure 26: one
of the units of the pair is located at the center of a Cartesian coordinate system, while the
other unit positions relatively to it are plotted after and before the transformation. The four
quadrants of the coordinate system correspond to the four main situations where distortion may
or may not be introduced during the transformation of these two units. The zero-distortion
case corresponds to case 1 shown in figure 26, where B (before transformation) and B (after
transformation) are located in the same quadrant. Cases 2 and 4 correspond to the inversion
of one of the two descriptor values during the transformation: as B (before transformation)
and B (after transformation) are not located in the same quadrant, the relative order of the A
and B values of one descriptor has been exchanged. Cases 2 and 4 introduce the same amount
of distortion. Case 3 corresponds to the worst-case scenario in terms of introduced distortion,
with both descriptor values exchanged during the transformation. The algorithm returns the
percentages p1 and p2 of units pairs that have exchanged respectively one and two of their
coordinates during the transformation.

Although the percentages returned by the algorithm are the most neutral and reliable
distortion measure available, it might be useful to dispose of a numerical distortion measure
that would sum up the effects of the 4 aforementioned possible cases. This is carried out by
attributing a distortion value d0 = 0 to case 1, a single value d1 > 0 to cases 2 and 4, and a
value d2 > d1 to case 3. Because abrupt transitions between these values could cause a small
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Figure 26: The different cases used in computing the distortion measure du to relative position changes.

angular displacement of B to result in a significant increase of the distortion measure (in the
cases where unit B is located close to one of the Cartesian axes of the A-centered coordinate
system), a smoothed curved is used. Figure 27 shows the distortion value attributed to a pair
of units in function of B (after transformation) angle in the A-centered coordinate system,
in the case where B is initially located in the first quadrant. Shifted functions (by multiples
of π

2 ) are used in cases where B (before transformation) is located in another quadrant. The
computation is carried out for each unit pair and the mean over all pairs gives the distortion
measure d for the transformation. In this report, the following values were used for this part
of the algorithm: d1 = 0 and d2 = 10, so that d is located between 0 (no distortion) and 10
(highest possible distortion).
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Figure 27: Distortion measure due to a relative position change, when B (before transformation) is in
the first quadrant (cf. Fig. 26).

30



Ianis Lallemand ATIAM 2009-2010

6.2 Evaluation: selected corpora

I chose to evaluate the algorithms on five selected corpora, which correspond to standard
geometric configurations as well as cases of application of the CataRT synthesis method.

• the madeleine corpus (2404 units), with Spectral Centroid and Periodicity descriptors,
is made of environmental sounds and presents a single-centered unit distribution;

• the gaussian corpus (2404 units), with 2-centered Gaussian descriptor values on each
axis, corresponds to a critical case with two very distinct centers (2404 units);

• the wave corpus (2404 units), with Start Time and Periodicity descriptors, is made of
environmental sounds and presents no identifiable distribution center (2404 units);

• the partita corpus (388 units), with Spectral Centroid and Note Number descriptors, is
made of instrumental sounds and presents initial descriptor values ranges dominated by
the descriptor values of a few marginal units;

• the alarm corpus (779 units), with Spectral Centroid and Note Number descriptors, is
obtained using Yin note segmentation on different alarm sounds. Units associated with
the same MIDI notes appear as horizontal lines in the 2D display.

Figure 28 shows the initial units distributions of these corpora with corresponding descrip-
tors.

In section 6.3, the uniform2D, domains (with 10 domains), iterated grid (10 iterations),
delaunay and uniform2D/delaunay algorithms are applied on the corpora described in 6.2. As
the only mapping available to all algorithms, the mapping to a square is chosen as the main
evaluation case. Mappings to a disk and a polygon are presented in A.1 and A.2. Graph-
ical results are presented for all corpora in sections 6.3.1 to 6.3.5, and commented in 6.3.6.
Distortion measures are given in 6.3.6 for all algorithms and corpora.
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Figure 28: From left to right, top to bottom : the madeleine corpus, with Spectral Centroid and
Periodicity descriptors; the gaussian corpus, with Gaussian descriptor values; the wave corpus, with
Start Time and Periodicity descriptors; the partita corpus, with Spectral Centroid and Note Number
descriptors; the alarm corpus, with Spectral Centroid and Note Number descriptors.
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6.3 Results: mapping to a square

6.3.1 The madeleine corpus

Figure 29 shows the results obtained with the madeleine corpus.

Figure 29: Original and modified madeleine corpora (top left: original, then from left to right, top to
bottom: uniform2D, domains, iterated grid (10 iterations), delaunay and uniform2D/delaunay algo-
rithms).
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6.3.2 The gaussian corpus

Figure 30 shows the results obtained with the gaussian corpus.

Figure 30: Original and modified gaussian corpora (top left: original, then from left to right, top to
bottom: uniform2D, domains, iterated grid (10 iterations), delaunay and uniform2D/delaunay algo-
rithms).
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6.3.3 The wave corpus

Figure 31 shows the results obtained with the wave corpus.

Figure 31: Original and modified wave corpora (top left: original, then from left to right, top to bottom:
uniform2D, domains, iterated grid (10 iterations), delaunay and uniform2D/delaunay algorithms).
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6.3.4 The partita corpus

Figure 32 shows the results obtained with the partita corpus.

Figure 32: Original and modified partita corpora (top left: original, then from left to right, top to
bottom: uniform2D, domains, iterated grid (10 iterations), delaunay and uniform2D/delaunay algo-
rithms).
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6.3.5 The alarm corpus

Figure 33 shows the results obtained with the alarm corpus.

Figure 33: Modified alarm corpora (algorithms from left to right, top to bottom: uniform2D, domains,
iterated grid (10 iterations), delaunay and uniform2D/delaunay).
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6.3.6 Distortion measures

Distortion measure results are given in table 1. Quantitative distortion measure results (d) are
plotted in figure 34.

madeleine gaussian wave partita alarm
p1 0 % 0 % 0 % 0 % 0 %

uniform2D p2 0 % 0 % 0 % 0 % 0 %
d 0 0 0 0 0
p1 18.3717 % 25.3668 % 11.4501 % 32.1962 % 22.8177 %

domains p2 0.00010391 % 0.0019742 % 0 % 0.046739 % 0 %
d 0.85656 1.2042 0.5096 1.5401 1.0746
p1 19.4499 % 32.79 % 23.5864 % 36.1864 % 34.5124 %

grid p2 0.00034636 % 4.7123 % 0.20837 % 0.014689 % 2.8978 %
(10 iterations) d 0.47009 2.001 0.9911 1.6446 1.5526

p1 41.8778 % 34.1827 % 27.4539 % 43.1718 % 28.2426 %
delaunay p2 9.8234 % 2.6994 % 2.4235 % 6.6142 % 2.8476 %

d 2.9814 1.8637 1.5045 2.7009 1.5806
p1 21.6047 % 28.7839 % 16.6518 % 33.7426 % 19.8733 %

uniform2D/ p2 0.54385 % 0.88407 % 0.46855 % 0.17227 % 0.36181 %
delaunay d 1.0152 1.4087 0.76238 1.5723 0.90526

Table 1: Distortion measures obtained with selected algorithms on evaluation corpora (p1 and p2:
percentages of units pairs that have exchanged respectively one and two of their coordinates during the
transformation; d: quantitative distortion measure).

As expected, the uniform2D algorithm introduces no distortion. However, this zero-
distortion action prevents the algorithm from spreading efficiently the units across the square,
the worst situation being obtained with the gaussian corpus (cf. Fig. 29 to 33).

Other algorithms introduce distortion in different amounts. Since the values of the dis-
tortion measures depend strongly on the units set initial geometry, algorithms have to be
compared based on their action on a single corpus. Reviewing the results corpus by corpus we
see that the domains algorithm is usually associated with the lowest non-zero distortion val-
ues. This could be expected because of the similarities between the domains and uniform2D
algorithms, as well as the interpolation that takes place in the domains algorithm to limit
the introduced distortion. Looking at the graphical results in figures 29 to 33, we see that
this algorithm performs quite well, though far from producing distributions where all units
are equally-spaced (such as distributions obtained with the delaunay and uniform2D/delaunay
algorithms).

The grid algorithm, though conceptually more satisfying than the domains algorithm (as no
dimension is favored over another), seems far less interesting than this one: with a few iterations
needed to efficiently spread the units across the square, it takes more time to complete than
the domains algorithm, and provides less interesting results (figure 16 shows that increasing
the number of iterations does not produce more satisfying results). Moreover, the distortion
values associated with this algorithm are quite high, because of its iterative application.

Since they both provide the same perfectly uniform graphical results (cf. Fig 29 to 33),
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Figure 34: Quantitative distortion measure results obtained with selected algorithms (inside each cor-
pus bar group, from left to right: uniform2D, domains, iterated grid (10 iterations), delaunay and
uniform2D/delaunay).

the uniform2D/delaunay algorithm improves the delaunay algorithm in every aspect. Al-
though the delaunay algorithm is usually associated with the highest introduced distorsion,
the distortion measure gives low values with the uniform2D/algorithm (comparable with those
corresponding to the domains algorithm). The fact that applying the uniform2D algorithm
prior to the delaunay algorithm lowers the distortion value can be explained by the fact that
this first transformation prevents the points from being too close to each other at the begin-
ning of the delaunay algorithm, which would result in anarchic movements of the units caused
by repulsive forces. In this context, the 2D-truss structure and the retriangulation process
inherited from the distmesh algorithm, by ensuring units stay bound to their close neighbors,
are responsible for the low distortion values associated with uniform2D/delaunay. Besides, the
uniform2D/delaunay algorithm is faster and more robust than delaunay. As the uniform2D
algorithm (first part of uniform2D/delaunay) is much faster than the delaunay algorithm (sec-
ond part of uniform2D/delaunay), the delaunay and uniform2D/delaunay algorithm speeds
can be compared by the number of iterations needed for convergence of the physical model
they both use. Using the criteria, the uniform2D/delaunay algorithm proves to be 1.2 times
faster on average than delaunay. By taking only into account the number of retriangulations
occuring during the iteration (cf. step 3 of the distmesh algorithm), the uniform2D/delaunay
algorithm appears to be twice faster on average than delaunay.

If the uniform2D/delaunay algorithm clearly stands out in terms of graphical results, the
domains algorithm remains an attractive and easier to implement solution. As both algorithms
are associated to relatively low and comparable distortion values (although the domains al-
gorithm seems to introduce a slightly smaller amount of distortion), the only advantage of
domains over delaunay might be its simplicity, which allows to much faster execution. How-

39



Ianis Lallemand ATIAM 2009-2010

ever, the delaunay algorithm is much more conceptually satisfying, and is able to provide
mappings to a disk and any polygon, as can be seen in A.1 and A.2.

6.4 Future improvements

As the most satisfying and configurable algorithm, the uniform2D/delaunay is the way by
which further improvements on the chosen approach in this internship may be introduced.
Particularly, the possibility to define non-uniform edge length function h(x, y) might allow
to take into account more than two descriptor values in the output distribution of the units.
One can imagine for instance a case where units are still represented in a projection plane
defined by two preselected descriptors, but where the distance between units in the transformed
distribution is modulated by their similarity in the high-dimensional descriptor space, measured
in terms of their euclidean distance. The physical nature of the algorithm allows to introduce
this modulation in a very flexible and configurable way, although preliminary tests conduced at
the end of the internship have shown that the modified algorithm will encounter convergence
issues unless the proper physical model parameters are used.

Although efficient in most cases, the version of the uniform2D/delaunay algorithm used
for mapping to a polygon still encounters convergence issues, that should be fixed before using
it systematically.

The physical nature of the uniform2D/delaunay algorithm makes it possible to extend it
to three-dimensional point sets. Besides taking an extra descriptor into account, this approach
could be useful for applications such as the Topophonie project and music interaction (where
navigation in a three-dimensional spherical space could be performed by the arm movements
of dancers, for instance).

As versions of the uniform2D/delaunay algorithm providing mappings to a square and a
disk posed no convergence issue and gave excellent results, these algorithms may be integrated
to the CataRT software. The implementation may provide further improvements in terms
of speed, as the Matlab versions of these algorithms take some time to complete their task,
particularly in the case of large corpora.

The chosen approach for this internship supposed that dimensionality reduction had already
been performed on the high-dimensional descriptor space (by pre-selecting two descriptors and
the corresponding projection plane). However, it seems important to find proper dimensionality
reductions algorithms that suit well the CataRT context, in order to determine more precisely
how they would compare to the results presented in this report. Particularly, it seems promis-
ing to combine a proper dimensionality reduction algorithm with the uniform2D/delaunay
algorithm.

Finally, as spreading the units in the interaction space might make specific tasks easier
(such as finding a particular unit that could have been previously hidden due to overlapping),
perceptive tests might be performed to study the advantages of using the solutions developed
during this internship in well-defined contexts. Besides, the perceptive effects of the introduced
distortion should also be studied, particularly since they were developed with the idea of
preserving the physical meaning of the coordinate system axes in mind.
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Conclusion

Amongst the algorithms developed during this internship, two solutions seem to address effi-
ciently the problem of spreading the units in a selected enclosing space. The domains algorithm
is a simple, low-distortion introducing algorithm that performs fast and provide reasonable
uniformisation of the initial distribution, though not as good as the uniform2D/delaunay al-
gorithm. This last one, however, produces perfectly equally-spaced units distribution with
amounts of distortion comparable to those introduced by the domains algorithm, though
slightly higher. Its physical model nature is also more conceptually satisfying, as it makes
it a true 2-dimensional algorithm which can be extensively modified for further improvements.

Both algorithms provide mapping solution to a square, the main encountered interaction
spaces in applications. However, the uniform2D/delaunay algorithm provides mapping solu-
tions to a disk and any polygon, which extends the range of its possible uses to performances
in complex geometrical contexts and Topophonie applications.

Further improvements of theses results could notably include taking into account more
descriptors from the high-dimensional descriptor space (either by dimensionality reduction
algorithms or by introducing the high-dimensional distance as a modulating factor in the
uniform2D/delaunay algorithm), or taking into considerations the results of tests investigating
how the introduced distortion is perceived. However, the square and disk mapping versions of
the uniform2D/delaunay algorithm can already be used to perform visualisation optimisation
tasks, and their implementation in the CataRT software is currently being considered.
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A Evaluation: mapping to a disk and a polygon

This section presents the results obtained with the versions of the delaunay and uniform2D/delaunay
algorithms providing mappings to a disk and a polygon. Distortion measures are given in A.3.

A.1 Mapping to a disk

Figure 35 shows results obtained with the mapping to a disk version of the uniform2D/delaunay
algorithm on evaluation corpora. As the delaunay algorithm provides graphically equivalent
results, they are not displayed.

Figure 35: Results obtained with the uniform2D/delaunay algorithm on evaluation corpora (from left
to right, top to bottom: madeleine, gaussian, wave, partita and alarm).
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A.2 Mapping to a polygon

Mapping results are presented here in the case of three different polygons. Both delaunay and
uniform2D/delaunay algorithms use the same parameters to allow comparing their distortion
measures. These parameters have been fine-tuned to ensure convergence of the algorithms in
most cases, although further improvements are possible (as demonstrates the general conver-
gence failure in the partita corpus case).

First example

Figure 36 shows results obtained with the mapping to a polygon version of the uniform2D/delaunay
algorithm on evaluation corpora, in the first polygon example case. As the delaunay algorithm
provides graphically equivalent results, they are not displayed.

Figure 36: Results obtained with the uniform2D/delaunay algorithm on evaluation corpora (from left to
right, top to bottom: madeleine, gaussian, wave, partita and alarm); crossed boxes indicate algorithm
does not converge.

It can be noted here that the algorithm stops before fully spreading the units across the
whole polygon in the case of the wave corpus. Results obtained with the delaunay algorithm
may display the same kind of artifact, but not necessarily on the same corpora. This illustrates
the difficulty to find a set of parameters that would ensure proper convergence of the physical
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algorithm in all cases.

Second example

Figure 37 shows results obtained with the mapping to a polygon version of the uniform2D/delaunay
algorithm on evaluation corpora, in the first polygon example case. As the delaunay algorithm
provides graphically equivalent results, they are not displayed. However, it has to be noted
that the delaunay algorithm failed to converge with the madeleine corpus in this case.

Figure 37: Results obtained with the uniform2D/delaunay algorithm on evaluation corpora (from left to
right, top to bottom: madeleine, gaussian, wave, partita and alarm); crossed boxes indicate algorithm
does not converge.
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Third example

Figure 38 shows results obtained with the mapping to a polygon version of the uniform2D/delaunay
algorithm on evaluation corpora, in the first polygon example case. As the delaunay algorithm
provides graphically equivalent results, they are not displayed.

Figure 38: Results obtained with the uniform2D/delaunay algorithm on evaluation corpora (shown in
the same order as Fig. 28); crossed boxes indicate algorithm does not converge.
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A.3 Distortion measures

Distortion measure results obtained with mappings onto a disk and the three polygon examples
are given in table 2. Quantitative distortion measure results obtained with mapping onto a
disk are plotted in figure 39; results obtained with polygons are not plotted due to missing
data (corresponding to cases where one algorithm is not converging).

madeleine gaussian wave partita alarm
delaunay p1 42.7352 % 33.6393 % 29.0049 % 44.2775 % 29.7087 %

(disk) p2 9.8733 % 2.7107 % 2.4199 % 6.4847 % 2.909 %
d 3.0279 1.8373 1.5818 2.7531 1.6586

uniform2D/ p1 22.5572 % 29.0673 % 17.9267 % 34.3355 % 21.3728 %
delaunay p2 0.53696 % 0.94198 % 0.4317 % 0.15758 % 0.29837 %

(disk) d 1.0612 1.4272 0.82299 1.6034 0.97591
delaunay p1 32.1045 % 55.3688 % 29.0412 % not not

(first polygon) p2 8.3129 % 2.8689 % 2.1091 % converging converging
d 2.3748 2.9777 1.5907

uniform2D/ p1 19.5114 % 54.9943 % 25.0091 % not not
delaunay p2 0.83323 % 1.6119 % 0.94212 % converging converging

(first polygon) d 0.98672 2.8352 1.2659
delaunay p1 not 32.5102 % 22.9497 % not 25.2414 %

(second polygon) p2 converging 1.7455 % 1.3557 % converging 2.3024 %
d 1.6874 1.1734 1.3752

uniform2D/ p1 23.212 % 28.0851 % 15.9882 % not 18.2661 %
delaunay p2 0.34566 % 0.62268 % 0.27213 % converging 0.23526 %

(second polygon) d 1.0797 1.3505 0.7137 0.81595
delaunay p1 39.9971 % 32.5102 % 26.4318 % not 24.8872 %

(third polygon) p2 5.5671 % 1.7455 % 1.4692 % converging 2.1431 %
d 2.4522 1.6874 1.3546 1.3439

uniform2D/ p1 27.0972 % 23.8461 % 20.6493 % not 18.3514 %
delaunay p2 0.47835 % 0.66175 % 0.42875 % converging 0.30135 %

(third polygon) d 1.282 1.1444 0.95967 0.83101

Table 2: Distortion measures obtained when mapping evaluation corpora onto a disk and a polygon (p1

and p2: percentages of units pairs that have exchanged respectively one and two of their coordinates
during the transformation; d: quantitative distortion measure).

As in 6.3.6, these measures show that in identical contexts, the uniform2D/delaunay al-
gorithm introduces lower distortion than the delaunay algorithm. Although both algorithms
have similar convergence schemes, the uniform2D/delaunay algorithms proves to be slightly
more robust than delaunay by succeeding to converge with the madeleine corpus in the case
of the first polygon.
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Figure 39: Quantitative distortion measure results obtained with available algorithms for mapping onto
a disk (inside each corpus bar group, from left to right: delaunay and uniform2D/delaunay).
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